
1

Reactive Instructional Planning to Support
Interacting Teaching Strategies

JULITA VASSILEVA
Federal Armed Forces University - Munich

85577 Neubiberg, Germany
E-mail: jiv@informatik.unibw-muenchen.de

Abstract
We propose an architecture for reactive planning of contents in instruction. It is
based on a framework for reactive planning which integrates opportunistic reactions
with plan-based (plan-repairs and complete replanning). It is suggested how this
framework can implement two radically different teaching styles, tutoring and
coaching, as well as their interaction within one system. One additional advantage is
the possibility to manage the way of system's reacting by means of different
pedagogical rules. At this point the system has been implemented and experimented
in the domain of integration of elementary functions.

1 INTRODUCTION

There have been many advances in the field of student modelling for Intelligent Tutoring Systems
(ITS). However, there has been no equivalent development in the study of teaching strategies for ITS that could
make use of elaborated student models. Most ITSs have been designed around an opportunistic paradigm where
instructional interactions have been directly triggered by diagnostic actions. In fact, most of the currently
existing ITSs are coaching systems (Self, 1994) which have little control over how knowledge gets presented to
the student.

Teaching, as most of the human activities is aimed at achieving certain goals and is based on plans
(Miller et. al, 1960). There have been numerous approaches implementing more or less generic pedagogical
strategies. Most of them have been focused mainly on how to best present an already selected contents. For
example, how to sequence explanations, tests, exercises, exploration (Van Marcke, 1992), how to manage the
initiative in a tutorial dialogue (Woolf & McDonald 1984), (Woolf & Murray, 1987), (Major, 1993). This is
called "delivery planning" by Wasson (1990). In contrast, she calls "content planning" the process of selecting
the content for an instructional goal that places the student on an appropriate learning path, like in (Peachey &
McCalla, 1986), (Murray 1989, 1990), and her own work (Wasson, 1990). Content and delivery planning are
parts of instructional planning - the process of mapping out a global sequence of instructional goals and actions
that provides consistency, coherence and continuity in the teaching process.

Most of the approaches to delivery planning have been concerned with representing some discourse
strategies used by human tutors. They have been computationally represented with ATNs (Woolf & McDonald,
1984), procedural networks (Spensley et al., 1990), parametrized template networks (Woolf & Murray, 1987).

A pioneering approach to using "classical" (Wilkins, 1988) planning techniques in ITS was developed
by Peachey & McCalla (1986) and Wasson (1990). They propose planning of content and delivery based on
explicit representation of the target knowledge concept structure (curriculum) to be performed at different levels
of granularity. The planning paradigm exploited is of least-commitment non-linear hierarchical planning
(Chapman, 1987). In the context of planning instruction this means that the plan does not consist of a particular
sequence of goals to be achieved, but rather of a set of plan fragments at a given level of granularity. The order
of executing these plan fragments is decided at execution time. In this way unexpected instructional
opportunities, like blocked learning paths, missing prerequisite knowledge or serendipitous gains in knowledge
can be taken into account.

We propose a framework and architecture for reactive planning, integrating the concept of planning
ahead with that of reaction to the environment. This framework differs from Wasson's planning paradigm in that
an a-priori ordered plan is created. This allows a global evaluation of the plan and an informed selection

1 Published in Proceedings AI-ED’95, 7-th World Conference on AI and Education, Washington, August 16-19
1995. AACE: Charlottesville, VA., 334-342.

according to optimality criteria. During the execution of this plan, the system tries to keep to the plan as long as
possible, but it is able to react adequately to unforeseen situations at plan time. This is done by not only
modifying the plan (avoiding blocked learning paths and making use of shortcuts) as in Wasson's classical
planning approach, but also by reacting locally to arising situations and by opportunistically-triggered
replanning. The ability to react without a plan is a highly desirable feature in the uncertain and dynamic
instructional environments.

An architecture implementing the proposed reactive instructional planning framework has been
developed. It is suggested that reactive planning can be used as an instrument for implementing interacting
teaching strategies.

2 INSTRUCTIONAL PLANNING IN ITS

2.1 Content Planning: Existing Approaches

Planning is a problem solving technique that creates a sequence of actions (i.e. a plan) to achieve a goal
and attempts to forecast the effects of executing the plan (Wasson, 1990). The classical planning problem
assumes a state-based definition of the application domain by means of set of primitive actions and their
preconditions and effects characterized as state predicates. A planning problem consists of this domain
description plus an initial and final (goal) state. The main assumption in classical planning is that the domain
description doesn't change while the planning is being carried out. This important limitation leads to a distinction
between plan time and execution time.

The first approach to applying planning techniques in ITS (Peachey & McCalla, 1986) uses a domain
knowledge base consisting of concepts corresponding to units of subject material which could be taught to the
student. Its development (Wasson, 1990) results in a classical planner which is

• hierarchical (on different levels of concept generality),
• non-linear (the plan is a non-ordered set of goals),
• least-commitment (incremental creation of plan fragments, no complete plan).
The first feature reflects the possibility to use the hierarchical abstractions of domain concepts in order

to organise planning better. This is a crucial feature for every planner that works in a complex domain.
The last two features provide a high run-time flexibility in adapting to the individual learning path of

the student. Recent studies (Minton, Bresina & Drummond, 1994), however, conclude that the only significant
difference between partial order and total order planning is planning efficiency (i.e. partially ordered planners
save resources from creating global plans that will be never executed and from searching of all possible plan
orderings). However, if the planning space is hierarchically organized, the eventual planning inefficiency of a
total order planner is not a big problem, since it can be compensated by planning in smaller spaces. Execution
flexibility can also be achieved with a total order planner and a post-processing step that removes unnecessary
orderings from the total ordered plan (Veloso, Perez & Carbonell, 1990).

From a pedagogical viewpoint partial order, least-commitment planning of instruction is not necessarily
optimal because of the following reasons. First, the dynamic process of incremental generation of local plans is
hard to imagine and understand for a human. It is not possible to evaluate such a plan in advance. Second, the
ordering of sibling-subgoals in the plan might be very important when there are goal-dependencies. This is often
the case in teaching. Learning one concept can make it easier or harder for the student to understand another
concept even thought there is no explicit strong relation of precedence between the two concepts. It would be an
advantage, if the planner allowed informed ordering of goals that could be assigned by use of additional
pedagogical knowledge source, or in an interactive regime during planning by the teacher or by the student
himself. Even though we advocate a more rigorous way of planning, by generating an optimal plan and ordering
the subgoals in advance and trying to keep to it as long as possible, we have to take into account the dynamic
nature of teaching. We do this by accepting a reactive planning paradigm and providing the possibility for
dynamic re-planning.

2.2 Reactive Planning

A system is called reactive, if it can react in an acceptable amount of time to any changes that occur in
the world while the system is running (Wilkins, 1988). A reactive planning system can react to events which
have not been foreseen at planning stage for different reasons (e.g. because they were not known or because it
would have been too expensive to consider them at planning stage). Reactive planning is increasingly becoming
an active area in AI research. There are a number of suggestions (Spector, Hendler, 1990), (Lyons, et. al, 1991),
but no definitive answers yet, on an appropriate way to view long-term planning so as to integrate it with
reaction. The area of ITS can be used as a domain for developing and testing ideas, architectures and
applications because it has all the features of a domain, where reactive planning is necessary : 1) the agent (the

ITS) can never be certain of the effects of its actions (whether the student really possesses the knowledge
suggested by the student model); 2) the agent cannot make the assumption that the world remains static and
unchanging while carrying out the plan; 3) the agent cannot assume that it knows everything about the world.

Thus, implementing a reactive planning framework in an instructional planner of an ITS can bring
valuable experience and results for both the field of planning in AI and for the field of ITS.

3 ARCHITECTURE FOR REACTIVE CONTENT PLANNING: TOBIE.

In order to implement realistic instructional planning, we need to have the possibility to represent and
teach a larger diapason of knowledge of a given domain, e.g. curricular, conceptual and problem solving
knowledge. TOBIE (T eaching O perators- B ased I nstructional E nvironment) provides an architecture for
representing different levels of knowledge organisation at the same time and also a uniform and modular
language for domain knowledge representation (see Figure 1).

Pointers

Domain
Exp ert

Procedure
 Lib rary

Teaching Actions
Diagnostic Actions

Diagnostic Operators

Remedial Operators

Teaching Operators

Domain Knowledge Base Pedagogical Com pon ent

Planner

Exe cutor

 St udent Mo del
(pers.charachteristics)

 Student Mod el
(domain knowledge)

Co ntrol
Data Interaction with the student

Figure 1. TOBIE Architecture

TOBIE (Vassileva, 1990, 1991) is an ITS-shell architecture based on content planning. It consists of
Pedagogical Component (Planner and Executor), a Student Model, and a Domain Knowledge Base. The domain
knowledge base contains the elementary objects of the domain corresponding to units of subject material that
could be taught to the student. It can be considered as a directed AND/OR graph. Directed AND/OR graphs
provide a mighty representation language in which curricular (concept) structures, goal (task) decompositions
and problem-solving spaces can be expressed. For example, Figure 2 shows how AND/OR graphs represent
domain knowledge on three different levels (curricular, problem-solving and performing single steps). AND/OR
graphs can be represented implicitly by sets of production rules, encoded in TOBIE by means of Teaching
Operators (TOs).

The TOs are STRIPS-like operators (Fikes & Nilsson, 1971) which consist of 6 parts (see Table 1): a
name, a list of preconditions (concepts in the student model) under which the operator can be used, a list of
expected effects (list of logical expressions to be added to the student model), an action which is a pointer to a
teaching procedure in the Library of Procedures. These procedure present to the student teaching material in a
specific way, e.g. present, explain, focus, remind, solve a problem, provide an exercise or test. The teaching
procedure can also contain a recursive call of the system on a different level of organisation of domain
knowledge, for example to show how to solve step by step a given type of problems (as mentioned before, in
TOBIE it is possible to represent different levels of knowledge organisation). The TOs contain also a part called
"Diagnosis". It contains a pointer to a Diagnostic Action — a procedure stored in the library of Teaching Actions
which evaluates the success of the student and eventually analyses the student's answer and finds
misconceptions. It adds to the student model either the effect-node(s) of the TO or the node corresponding to the
diagnosed misconception. The teaching actions which request solving a problem of a give type are associated
with the same diagnostic procedure. The last part of a TO is called "Type". It contains a list of parameters which
describe the teaching action from a pedagogical point (e.g. if it is an explanation, example, exercise), the
difficulty (if it is an exercise or test), and the type of media (text, graphics, picture with motion or sound).

Table 1. An example of a TO and a teaching action procedure (see the concept structure in Figure 2)

NAME CONDITIONS EFFECTS ACTION DIAGNOSIS TYPE
teach_partfra rat_t5, tr_partfra part_fra teach(partfra) test(partfra) linear
PROCEDURES LIBRARY:

teach (name):
pres_name, /* presents a text explaining how to solve integrals by method "name"
examp_name, /* presents an example of a solved problem with method "name"
demo(name), /* calls recursively planning in the problem-solving space with background goal "name" and

 default teaching action "demo" (tutoring strategy).
exerc(name) /* calls recursively planning in the problem-solving space with background goal "name" and

 default teaching action "exercise" (coaching strategy)
test(name): /* calls recursively planning in the problem-solving space with background goal "name" and

 default teaching action "test" (like coaching but no feedback).

STD_INT - sta ndard inte grals
SUBST - integ rating by sub stitu tion
.....
RAT_ T4 - rat ional exp r. of ty pe

TR_PA RTFRA - a bility to d ecompos e
 in to p artia l fractions
PA RT_FRA - i nteg rating rational exp r. b y
 decompo sing into par tial f ractions

STD_INT

Instantiated Problem-
solving space of an
integration problem

Curriculum concepts

SUBST

INT_PART

TRIG_INT

STAN_SUB
TR_PARTFRA

RAT_T5

PART_FRA

Performing single
transformations

1
2

dx
x−2∫

1
2

dx
x+2

∫

1
2

dx
x−2∫

1
2

dx
x+2∫+

xdx

x2 −4()∫

1
2

 d x2

x 2−4()∫

1
2

 ln x−2

1
2

 ln x+2

1
2

 ln x2 −4

dx

ax2 +b x+ c()∫

D ≤ 0

Figure 2. Representing different levels of knowledge organization

The model of the student's domain knowledge represents the current state of the student's knowledge in
terms of the elementary objects that are believed to be learned (correct concepts and misconceptions). It is
updated in two ways which are not discussed here, since it is of no direct link with the goals of this paper. The
model of the student's personal characteristics represents certain preferences of the student to different types of
teaching actions, psychological and motivational parameters, like field-dependence, concentration, confidence,
persistence.

The Pedagogical Component contains two sub components - a Planner which dynamically generates
plans in the knowledge structure to meet certain teaching or goals and an Executor which carries out the plan, re-
invokes the Planner or reacts locally to arising opportunities. In the next section we shall discuss the Pedagogical
Component and the way reactive planning is of carried out.

4 REACTIVE PLANNING IN TOBIE

The structure of the Pedagogical Component is shown in Figure 3.

Planner

Pedagogical Component

Executor

 Domain Model
Tea chin g Op erat ors

Situation analyser
D iagn ostic Op erato rs

Reactor / Actuator
Reme dial Ope rator s

Domain Knowledge Base
PPllaannnniinngg

EExxeeccuutt iioonn aanndd MMoonnii ttoorr iinngg

Re act ion
 R ule s

 Teaching
Actions Library

Figure 3. Reactive Planning in TOBIE

4.1 Planning

The Planner is activated within the domain concept structure at one given level of organization. The
planning algorithm is a modification of the AO* (Nilsson, 1980). The optimisation function h can be selected so
that different criteria for optimality can be implemented (e.g. the shortest, the plan avoiding certain concept, plan
with a certain topology-type etc.). The solution graph of an AND/OR graph imposes only a partial ordering on
the solution steps. If there are no subgoal interactions, the order of applying the operators is not important. In
principle, goal dependencies can:

1) make the further execution of a plan impossible since there are TOs which influence negatively on
the student's knowledge, i.e. which could delete concepts from the Student Model, or

2) make the plan no longer optimal because of unexpected acquiring of goals.
The first type of goal interaction is dangerous. In our architecture, however, only the Remedial

Operators can delete concepts (corresponding to misconceptions) from the student model and they are not
considered at planning stage. Misconceptions and their remediation are never planned in our system, but treated
opportunistically. However, assuming that there is no explicit goal interaction, the plan can be partially
reordered interactively or automatically according to certain pedagogical criteria (for example, more concrete
concepts before abstract ones, simple concepts before more difficult ones etc.) and considering the pedagogical
type of the TOs. If it happens that the student acquires unexpectedly concepts, no plan-shortcut is made. Unlike
Wasson's planner our system doesn't take advantage of learning opportunities as they arise on the flow. A
shortcut will be made only in case that the plan can't be continued and re-planning is needed.

4.2 Situations

After an initial plan is generated, it is passed to the Executor. It executes the TOs by invoking the
procedure assigned by the "teaching action" part of the operator from the Procedure Library (see Table 1). This
procedure can consist of other procedures which present explanation of the concept, give examples, start an
exercise. The main teaching action prcedure of a TO contains always a procedure which tests whether the
student has acquired knowledge on the concept. The diagnosed knowledge on the concept or misconception is
included in the student model which provides a condition for the next Teaching or Remedial Operator to be
applied.

In case that a misconception has been diagnosed and entered the student model, or an undiagnosable
error has been made (or a call for help from the student), a not planned situation arises. Another type of
unexpected situation can occur when the teaching action of a TO invokes instructional planning at another level
of knowledge organization. This is not considered at planning time, since the actions of the TOs are stored
separately in a library and TOs are selected only because of their conditions, effects and pedagogical type. In

principle the calls to another level could be considered at planning, but this would make the planning much more
complex and very often the resulting plan will not be feasible because of external factors, like time. Since
switching to a different level means instruction in a comparatively independent part of the material, it won't be
pedagogically justified to interrupt the process in the middle because of external factors, though sometimes it
would be necessary to do so. That is why the decision whether to permit a switch and how to do it has to be
taken at plan-execution time, when the need arises (and not long in advance).

Another situation can arise from a combination of external factors which are not dependant on the plan
execution. For example, a violation of time-restriction, evidence that the student is no longer concentrated,
opportunity to fulfil a teaching goal that has been staying in the background (for example, on a different level of
organization of material), evidence from history that the student has had difficulties with a concept before etc.
This type of situation is recognised by the so-called "Diagnostic operators". They are rules encoding
combinations factors (variables) with different values describing the current context. We distinguish among five
types of factors: parameters of the environment (time, resources); history (how long did it take to study concepts
with similar difficulty, did he ever learn the concept, did he ever show success on problems involving knowledge
on this concept etc.); background teaching goals; the model of the student's domain knowledge and the model of
the student's personal characteristics.

A search for matching diagnostic operators is done at every tact of executing the plan, i.e. after the
execution of a elementary procedure included in the action-procedure of a TO (see Table 1.). The various
situations matched by the diagnostic operators can't be treated in an equal way. That is why every diagnostic
operator assigns also a specific reaction.

4.3 Reactions

Our system provides four principle type of reactions: ignoring the situation, an opportunistic reaction
without changing the plan; local plan repair; global re-planning. They are shown in Figure 4.

Local Plan-Repair Global Re-planningConcept Structure

Teaching GoalInitial
Plan:

 a)

Opportunistic Reaction

RO

b) c) d)

Current
node

Figure 4: Reactions.

Figure 4, a) shows an AND/OR graph, representing a domain structure at some level of organisation,
for example, any of the levels shown in Figure 2. The initial plan for achieving the teaching goal and the current
node (concept or problem solving state) where an unexpected situation has arisen are presented. The first type of
reaction (ignoring the situation) allows the system to follow a plan rigidly. An opportunistic local reaction
(Figure 4, b) provides an immediate feedback while keeping the initial plan. A Remedial Operator (RO) will be
executed when the student model contains the misconception matching the operator's preconditions. Special ROs
are provided for unidentified errors (general hint, humorous remark, encouragement, etc.). Local Plan Repair
(Figure 4, c) means that only the part of the plan related to the current node will be changed. In this way the
system tries to find an alternative way to teach a difficult concept without changing the overall plan. A global
replanning means finding an alternative plan for the main teaching goal (see Figure 4, d).

A summary of the possible reactions to the four situations is given in Table 2.

4.4 Matching The Situations With Reactions

A set of rules is responsible to select a reaction to situations that occur during plan-execution. These
rules we call "reaction rules" or "pedagogical rules", since we believe this is more a pedagogical decision. The
conditions of these rules are based on the same groups of factors that are matched by the diagnostic operators,

but they have one additional factor - the type of situation. That is why we provide a tool for creating pedagogical
rules and diagnostic operators that define new possible situations as combinations of factors. Four approaches
are possible:

- to define at hoc the reactions to the possible situations (the current solution);
- to interview teachers with the goal to extract rules and implement them using the rule-editing tool or

to ask them to implement the rules directly themselves (however, this requires that the teachers are able to
articulate the factors influencing their decisions, which is not often the case);

- to observe what human teachers do in real situations and try to extract some knowledge out of their
behavior, i.e. analysing protocols of teaching sessions, and applying machine learning techniques in order to
define cases and, eventually, to generate decision trees;

- to try to define some guidelines from existing didactic theories, or to try to model within this
framework the teaching strategies of existing ITS, like Wasson (1990), COCA (Major, 1993).

Table 2. Situations and Reactions

Local Opport.
 Reaction

Local Plan- Repair Global
Replanning

unidentified error,
misconceotion

combination of
 factors

call to another level

execute remedial
 operator

execute remedial
 operator

make a plan for the
current parent goal
and replace the corres-
ponding part of the
old plan

start the planner
 anew

after coming back, re-
plan to make use of the
changed environment

keep old plan in
stack and revise it
after returning

revise old plan from
stack using "shortcuts"
from obtained goals at
the other level

Situation

Reaction

5 IMPLEMENTING TWO TEACHING STYLES AND THEIR COMBINATIONS

The TOBIE architecture and the reactive planning framework described above allow implementing two
radically opposite teaching styles and their interaction in one system.

Tutoring is a teaching style aimed at communicating new material, presentation-oriented,
straightforward, the initiative is in the tutor, the student is guided and prompted to reply, solve a problem, etc.

Coaching is a teaching style aimed at developing the skills of applying existing knowledge to new
situations, to re-organize knowledge structures and develop meta-cognitive skills. The initiative is in the hands
of the student, the coach can comment and interfere to give advice, or provide help when requested or when this
is necessary to overcome misconceptions and difficulties.

Both strategies can be modelled as a planning process. The only difference is who takes the active role.
In the first case, it is the system who creates a plan for teaching a given concept and leads the student step by
step to achieving the goal. In all previous sections we have been focusing implicitly on a tutoring style, that is
why now we shall only concentrate on the implementation of a coaching style and how one system can
interactively use both styles.

A typical case when coaching style is used is to support the student in exercises for solving problems
(represented as a problem state space, a goal and a initial state). The system can generate a solution by creating a
plan which leads from the initial to the goal state (if several plans are possible, it selects an optimal one), but
instead of executing it, it only observes the student's actions and tries to match them with the system's plan. In
case that the student makes the same steps and goes along the system's plan, no reaction from the system is
needed. In case of a difference, however, a situation occurs which requires a reaction. The possible reactions are
defined in exactly the same way as discussed in the previous section. They are: ignoring the difference (keeping
silent); local reaction aimed at bringing the student back on the system's plan (like in the model-tracing style of
the Lisp-tutor); local plan-repair (trying to find a way to accommodate the student's solution within the system's
plan) and complete replanning (trying to find another plan for solving the problem that fits with the student's
solution).

Other situations that need reaction can be defined in analogy with those described in the previous
section: a combination of factors (e.g. environment, the history, the student model, the structure of the problem
solving space, opportunities to discuss background teaching goals, personal characteristics of the student). For
example, if the time is nearly over, and the plan which the student is following is too long or involves
complicated (expensive) steps, this creates an opportunity to interfere.

The pedagogical rules for selecting a reaction for the specific situation involve the factors mentioned
above and depend on the type of situation. For example, if there is enough time and the student is confident, to
choose a re-planning reaction to accommodate his way of solving instead of bringing him back with a remedial
operator to the corresponding state in system's plan.

Here we have to state that there is no difference in the planning and executing mechanisms used to
implement both teaching styles. The difference in the interaction and initiative is completely due to the different
teaching actions, the procedures that carry out the dialogue with the student and the presentation of material.

A combination of the two strategies will be shown with example. Let's suppose that the system is
teaching in the domain of symbolic integration and has planned instruction according to the curriculum from
Figure 2. The current goal is to teach the concept (method in our case) PART_FRA - "integration by
decomposing into partial fractions". The action of the TO for this goal is a sequence of five procedures (see
Table 1), the first two presenting a textual explanation and example, the third one demonstrating a step-by-step
solution of an example problem, the fourth one - coaching the student's solving of another problem and the fifth
one - testing how the student copes with a problem alone. The demo-procedure invokes planning on a different
level of knowledge organization, where the TOs represent admissible transformations between different types of
expressions (states) and heuristics for selection of transformations for different states (Slagle, 1963). A problem
solving space is generated (instanciated for the example problem) by executing TOs which perform
transformations over the instanciated integrand-types (the problem-states). There are two main types of teaching-
action procedures at this level, which correspond to the two teaching styles. A procedure for tutoring style
("demo") performs the transformation encoded with the TO and displays the result. By executing the actions of
the TOs from the plan, the solution of the problem is shown step by step.

The exercise("exerc") procedure invokes the planner again on the problem-solving level for a different
problem. This time a coaching style procedure is activated. Such a procedure visualises the initial state, asks the
student to select a transformation (a TO), performs it (only if it is applicable; if not - a situation arises) and
builds increasingly another problem-solving space the student model.

Let's suppose that the student has to solve the problem:
x

x2 − 4
∫ dx . The student chooses to apply a

standard transformation xdx ⇒ 1
2()dx2 , resulting in 1

2() dx2

x2 − 4
∫ and then selects a substitution to transform it

to 1
2() ln x2 − 4 which is the right solution. However, the plan of the system was to teach him solve with the

method of partial fractions (background goal inherited from the upper level), so the system's solution would be

to transform the initial integrand into
A

x − 2
+ B

x + 2
, then to find out the coefficients A, B by solving a system of

linear equations and finally to obtain 1
2() dx

x − 2
∫ + 1

2() dx

x + 2
∫ which transforms into a sum of standard

integrals 1
2() ln x − 2 + 1

2() ln x + 2 , equivalent to 1
2() ln x2 − 4 . Because of the background teaching goal, a

reaction will be given at the situation which arises at the first step (where the student's solution differs from the
system's). The reaction will be a remedial action to bring him to the system's plan. If there is not a specific
background goal or if the pedagogical rules do not assign so high priority to background goals, the system would
let the student proceed in his own way. As mentioned before, the pedagogical rules can define a completely
different behavior of the system.

6 CONCLUSIONS AND FURTHER WORK

In this paper we propose an architecture for reactive planning of contents in instruction. In contrast with
classical non-linear, hierarchical, least commitment planning, our approach allows global evaluation of the plan
and selection of optimal one, coping with interactive goals and hierarchical planning on different levels of
organising the material. The architecture is based on a framework for reactive planning integrating opportunistic
reactions with plan-based (plan-repairs and complete replanning). It is suggested how this framework can
implement two radically different teaching styles, teaching and coaching, as well as their interaction within one
system. One additional advantage is the possibility to manage the way of the system's reacting by means of
different pedagogical rules. At this point the system has been implemented in the domain of integration of
elementary functions at three levels or domain knowledge organisation: curricular - methods for integration,

solving integration problems and performing single transformations. A tool for editing diagnostic operators and
pedagogical rules has been developed and three rule-sets have been created ad-hoc. Our current work is aimed at
identifying such rules by interviewing teachers. A tool for induction of pedagogical rules from protocols is being
implemented now, applying machine learning techniques. We intend to compare the rules derived from
protocols with those which follow from some general frameworks and theories known in didactics.

REFERENCES

Chapman, D. (1987) Planning for Conjunctive Goals, Artificial Intelligence 32, 333-377.
Fikes, R., Nilsson, N. (1971) STRIPS: a new approach to the application of theorem proving to problem

solving.. Artificial Intelligence, 2(3/4), 189-208.
Lyons, D., Hendriks, A., Mehta, S. (1991) Achieving Robustness by Casting Planning as Adaptation of a

Reactive System, Proceedings of IEEE International Conference on Robotics and Automation, April, 1991,
IEEE, New York.

Major, N. (1993) Reconstructing Teaching Strategies with COCA, Proceedings of AI-ED'93, 66-73.
Miller, G., Galanter, E., Pribram, K. (1960) Plans and the Structure of Behavior. Holt, Reinhart and Winston.
Minton, S., Bresina J., Drummond, M. (1994) Total Order and Partial Order Planning: A Comparative Analysis,

Journal of Artificial Intelligence Research, 2, 227-262.
Murray, W. (1989) Control for intelligent tutoring systems: a blackboard based dynamic instructional planner.

Proceedings of the 4th International Conference on AI and Education, Amsterdam, 150-168.
Murray, W. (1990) A blackboard based dynamic instructional planner. Proceedings of the 8th National

Conference of AI, Boston, MA, 434-441.
Nilsson, N. (1980) Principles of Artificial Intelligence, Tioga Publ.: Palo Alto.
Peachey, D., McCalla, G. (1986) Using Planning Techniques in Intelligent Tutoring Systems, Int. J. Man-

Machine Stud., 24, 77-98.
Self, J. (1994) The Role of Student Models in Learning Environments, IEICE Trans. Inf. & Syst., E77-D, no.1.

3-8.
Slagle, J. (1963) A heuristic Program that Solves Symbolic Integration Problems in Freshman's Calculus,

Journal of the ACM, 10, 507-520.
Spector, L., Hendler, J. (1990) An Abstraction -Partitioned Model for Reactive Planning" in Y. Wilks and P.

McKevitt (eds.) Proceedings of the 4-th Rocky Mountain Conference on AI, Computing Research
Laboratory, New Mexico State University, Las Cruces, N.M., June 1990.

Spensley, F., Elsom-Cook, M., Byerley, P., Brooks, P., Federici, M., & Scaroni, C. (1990). Using multiple
teaching strategies in an ITS. In C. Frasson & G. Gauthier (Eds.) Intelligent Tutoring Systems: At the
crossroads of Artificial Intelligence and Education. Norwood, N.J.: Ablex.

Van Marcke, K. (1992) Instructional Expertise. in C. Frasson, G. Gauthier & G.I. McCalla (Eds.) Intellignet
Tutoring Syst, Lecture Notes in Computer Science No.608: Berlin-Heidelberg.

Vassileva, J. (1990) An Architecture and Methodology for Creating a Domain Independent Plan-Based ITS.
Education & Training Technologies Internaional, 27 (4), 386-379.

Vassileva, J. Radev, R. Dimchev, B., Madjarova, J. (1991) TOBIE: An Experimental ICAI-Software in
Mathematics. Proceedings CALISCE'91, Lausanne, 145-150.

Veloso, M., Perez, M. & Carbonell, J. (1990) Nonlinear planning with parallel resource allocation. In
Proceedings of the Workshop on Innovative Approaches to Planning, Scheduling and Control.

Wasson, B. (1990) Determining the Focus of Instruction: Content Planning for Intelligent Tutoring Systems,
Doctoral Thesis, Department of Computational Science, University of Saskatchewan.

Wilkins, D. (1988) Practical Planning: Extending the Classical AI Planning Paradigm, Morgan-Kaufmann: San
Mateo.

Woolf, B., McDonald (1984) Building a computer tutor: Design Issues. IEEE Computer, 17(9), 61-73.
Woolf, B., Murray, T. (1987) A framework for representing tutorial discourse. Proc. 9th IJCAI, Los Altos, CA.

Acknowledgements:

I am thankful to Bojko Dimchev for the original implementation of TOBIE (now five years ago), to
several graduate students at the institute of the Technical Computer Science in Munich who implemented parts
of the system; to Ulrich Hoppe and to the anonymous reviewers for commenting on earlier drafts. This work has
been supported by project I-406 of the Bulgarian Ministry of Science and Higher Education.

