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ABSTRACT 
An implementation of an ITS-shell architecture in a specific domain is described. 
Various features of the architecture are demonstrated on examples from the domain. 
Special attention is paid to the issues of domain-knowledge representation, student 
modelling (incl. diagnosis), the pedagogical decisions taken by the system in both a 
tutoring and coaching style of instruction. 

 
 
1 Introduction 
 
 During the second half of the last decade one of the focuses of interest in Intelligent Tutoring Systems 
(ITS) research was finding architectures applicable to different domains. A practical stream in this direction is 
the development of ITS-shells [Vass90], (Major & Reichgeld, 1992); (Nicaud, 1992); (Murray & Woolf, 1992). 
 The major problem in developing an ITS-shell is to find a unified way of representing the knowledge 
to enable the system to model the student and to take pedagogical decisions. Therefore, the main goal of our 
work was finding a unified way of representing domain-specific knowledge that integrates expert knowledge 
about the domain (e.g. the goals and sub-goals in solving a problem), pedagogical knowledge (e.g. the 
curriculum), diagnostic knowledge (how to interpret student's actions) and, in addition, a unified scheme 
across different domains for taking pedagogical decisions was created. These issues are presented in the 
paper. Although all examples are related to the domain of integration, in which the prototype TOBIE was 
implemented, they can be easily generalised.  
 
 
2 Architecture 
 
 The architecture of the system consists of the following components: a domain-independent 
Pedagogical Component, an Authoring Component (Administrator), a model of the student's domain knowledge 
(we shall call it briefly Student Model) and a model of the student's individual characteristics (see Figure 1).  
 
 The "kernel" of the system is a Domain Knowledge Base. It contains  
 • a black-box domain expert program for solving problems; 
 • an integrated representation of all domain-dependent knowledge that is needed by the 
invariant Pedagogical Component to lead instruction and to create and update the two student models. 
 According to the target level of instruction and the author's viewpoint on the subject, this knowledge 
can be organised in various ways.   
 
2.1 Knowledge Organisation 
 
 With "knowledge organisation" we denote: 
 • Decomposition of knowledge into primitive elements (learnable units, beliefs, concepts, problem 
solving steps etc.). The elements of knowledge decomposition can be chosen in various ways according to the 



 

different levels of knowledge in a given domain, or to different viewpoints. There are special "bug"- elements 
that correspond to diagnosable errors, misconceptions or bad-plans.  
 • Configuration of these elements by defining different types of links, like links of precedence, 
analogy, generality etc. The configuration of these elements can also be done in various ways. It can express:  
 1) higher-level domain-expert knowledge (e.g. problem solving strategies);  
 2) domain-dependent pedagogical knowledge (e.g. in what order to teach the elements of knowledge).  
 The Domain Knowledge Base can contain various types of knowledge organised on different levels 
(see Figure 2). Since the main unit in representing the domain-knowledge organisation is called a Teaching 
Operator, this architecture is called a Teaching Operators-Based Instructional Environment (TOBIE).  
 In the next section we describe the representation of domain knowledge in TOBIE that allows wide 
applicability, modularity, ease of extending and some psychological pertinence.  
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Figure 1: The general ITS -architecture 
 
 
2.2 Teaching Operators (TOs)  
 
 A Teaching Operator is defined as: TO: SM ---> SM , i.e. a TO on a given level of knowledge 
organisation is a function over the space of possible states of the student's model. The idea of Teaching 
Operators is connected with instructional planning (Peachey & McCalla, 1986), (Wenger, 1987). We have 
generalised this notion (Vassileva, 1990b). The TOs are structures representing in an integrated way the 
different types of domain-dependent knowledge about:  
 • the domain-specific teaching actions; 
 • when it is appropriate to apply them; 
 • what possible errors could be done.  



 

 A TO is a rule-like structure, which conditions and effects are the names of elements on a given level 
of organisation of domain knowledge. A TO is invoked, if the student model contains its conditions. After a 
successful execution of a TO, the diagnosed effect-elements are added to the student model.  
 Every TO is associated with a procedure called "teaching action" that carries out the  interactions with 
the student. It can be either a teaching or a problem-solving step, depending on the level of organisation of the 
TO.  
 The context of a teaching action is narrow enough to allow including the knowledge needed for 
diagnosing the student's answers. Therefore, a list of diagnostic procedures called "passing criteria" is included 
in the TO's structure. These procedures analyse the student's answer according to the context of the teaching 
action. There are two groups of procedures. The first group tries to test the correctness of the student's answer 
and add the effects of the TO to the student model. The procedures from the second group are activated one by 
one, when no procedure of the first group has succeeded. Their purpose is to diagnose the bug or misconception 
that caused the error. If any of them succeeds, the corresponding bug-element is added to the student model 
instead of the TO's effects. Since several TOs can share the same diagnostic procedures and teaching actions, 
they are stored separately in a "Library".  The "passing criteria" and "teaching actions" parts of the TOs contain 
pointers to the actual procedures.  
 The success of TOs with different types of teaching actions can give evidence about some individual 
characteristics of the student. For this reason a list of parameters called "evaluation criteria" is attached to the 
TO's structure. These parameters describe the teaching action from a pedagogical point of view. They are used 
by statistical mechanisms in the Pedagogical Component for creating and updating the Individual Student 
Model.  
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Figure 2: Three levels of knowledge organisation in TOBIE 
 

 
 
 
2.3  Remedial Operators (ROs) 
 
 RO: SM* ---> SM , where SM* denotes the set of possible states of the student model that contain 
elements, corresponding to bugs, misconceptions (bad plans) or undiagnosed errors. The purpose of ROs is to 
remove the bug-elements from the student model, therefore the conditions of ROs are bug-elements. The result 
of a successful execution of a RO is that its conditions are removed from the student model. The action of a RO 
can be any appropriate teaching action: text, providing a hint or help, letting the student see a possible next step 
in the solution, explanation or giving a new problem. Of course, the student may not be able to recover - he can 
make another error. Again a list of diagnostic procedures (passing criteria) checks and if this is the case, a new 
bug-element is added to the student model. The unused effects-part of a RO can represent additional conditions. 
It can contain a list of elements, indicating when this particular type of remedial for a given bug will be most 
appropriate (e.g. intermediate step reached during problem solving; facts from the history of the tutoring 
session, contained in the list of bugs or in the student models on the same level for the same type of problems).  
 For example, if the student has not selected an appropriate transformation for an integrand of a given 
type, several ROs can help him choose the appropriate transformation, some of them requiring additional 



 

conditions, e.g. that the student has already successfully chosen the correct transformation when he obtained an 
integrand of the same type before. The action of such a RO will not show the appropriate transformation 
directly, but will make use of the past experience e.g. "Remember what you did before, when you obtained the 
integrand...".   
 
2.4 Diagnostic Operators (DOs)  
 
 DO: SML1 ---> SML2, where SML1 and SML2 are the sets of possible states of the model of student 
knowledge on possibly different levels of knowledge organisation. The purpose of the DOs is to find the signs 
of bugs, misconceptions, bad-plans by analysing the contents and structure of the student model. The conditions 
and the effects of a DO can be elements on different levels of knowledge organisation. The passing criteria are 
procedures that analyse the structure of the "condition-level" model and try to find configurations of elements 
that are significant for bugs on the "effect-level" student model. The action of a DO can be empty, i.e. it may not 
involve any particular teaching action. It can also be a procedure that invokes the system with a set of TOs, 
representing the "effect-level" domain knowledge. On this level the system may try to remove the bug by an 
appropriate RO. An example of a DO is given in section 4.1.2.  
 
 
3 Domain Knowledge Representation  
 
 The TOBIE-architecture allows a integrated and unified representation of domain-dependent 
knowledge. "Integrated" means that different types of knowledge, needed by the Pedagogical Component and 
for modelling both the student's knowledge and his individual characteristics are represented together with 
operators (TOs, ROs, DOs). "Unified" means that knowledge on different levels of organisation and from 
different viewpoints within a fixed domain or in various domains is represented by means of operators having 
the same structure.  
 
3.1 Representing curricular knowledge 
 
 Knowledge about the curriculum of the subject is needed by the Pedagogical Component to 
dynamically plan instruction. It can be easily represented with a set of TOs. The first level of knowledge 
organisation in our prototype corresponds to the curriculum. The elements of knowledge decomposition 
represent the methods of integration the student must learn. The TOs encode the order in which these methods 
should be taught. The teaching actions are explanations, examples and demonstrations of how a given method is 
performed etc. In the example below the teaching action is solving a sequence of problems of a given type. 
Several sets of TOs can be created on this level corresponding to different curricula on the subject of 
integration. Here are some of the elements in the decomposition of domain knowledge - they denote that the 
student knows:   
 1L1 - standard integrals; 
 1L2 - elementary methods for integration; 
 1L3 - integration of expressions of the type 1/(ax2+bx+c)n; 
 1L4 - integration of rational functions; 
 1L5 - integration of rational functions of sin and cos ; 
 1L6 - integration of Abel's functions etc. 
 An example of a TO on this level is given in table 1.  
  
Table 1: A TO on the first level (L1). 
 
Conditions: 1L1, 1L3 
Effects: 1L4 
Action: Procedure which creates a sequence of problems and presents them to the student 
Passing criteria 
Invoke the expert to solve the problem. Compare the answer with the student's answer. If they are identical, the 
name of the problem is added to the SML1. If they differ, the system is activated on Level 2 (L2) to trace the 
way of solving the problem. A SML2 is created. Depending on its state, after returning from L2 the name of the 
problem is added or not to the SML1. 



 

Eval.criteria: intelligence: medium or high; concentration: high, confidence: high, motivation: high.  
 
 DOs on the first level analyse the structure of the student model after every change and try to find a 
configuration indicating success. In such a case the list of problem-names will be deleted and 1L4 will be added 
in the 1-level student model, otherwise instruction continues until the end of the sequence of problems and the 
TO fails to obtain its effect.  
 In fact, on this level no actual domain expertise is represented. A system with a set of TOs for only this 
level will  not behave more "intelligently" than a traditional CAI program, containing a script of instruction (but 
it is generated dynamically during instructional planning, see section 5.1.).  
 
 
3.2 Representing knowledge for planning the problem solution  
 
 Knowledge representation with TOs is also appropriate for representing articulate (glass-box) domain 
expertise. Since the TOs are productions, this way of representation is applicable for tasks that are 
decomposable into independently solvable sub-tasks. Typical tasks of that type are those for strategy finding (in 
planning, games, synthesis of programs), problems whose solutions are unordered sequences of actions (e.g. 
symbolic integration), problems for creating logical deductions and theorem-proving. Even some problems 
whose solution can be represented with an ordered sequence of actions could be well presented with TOs, since 
the search for some sub-sequences can be done in an arbitrary order (e.g. the towers of Hanoi problem). 
Therefore the class of domains in which problem-solving knowledge can be represented by TOs is very wide.  
 One of the motives for choosing the subject of elementary integration for the first application of the 
TOBIE-architecture, was that symbolic integration is a classic example of a domain where heuristic production 
rules can be used for encoding articulate expertise. All that was needed was to encode some of the heuristic 
rules, invented by Slagle (Slagle, 1963), with ROs and in this way to create an articulate domain expert for 
provision of help, advice or for correction of the student's solution path.  
 The uniform way of knowledge representation allows using the same inference mechanisms at different 
levels of knowledge organisation. For example, a planning program could serve both as an instructional planner 
at a curriculum level and as a planner of the problem-solution at a level, corresponding to the decomposition of 
the main goal into sub-goals. In this way, a given set of TOs and a domain-independent inference mechanism 
compose a simple articulate domain expert at a given level of organisation.  
 Building an articulate expert is a non-trivial task. The architecture, however, is entirely modular and 
allows combining "pieces" of articulate and compiled expertise. The articulate "pieces" of expertise are stored as 
sets of ROs. A set of ROs may  not be able to solve a domain problem entirely (the rules are heuristic, there is 
no guarantee that the transformation that they recommend is the best choice for the specific problem). They are 
used when it is necessary to help the student locally, at a fixed stage of the problem solving process. A similar 
idea for combining articulated with compiled expertise has been implemented in WEST [(Burton & Brown, 
1982)], but in a different way. By combining pieces of articulate and compiled expertise a lot of requirements as 
robustness, reliability, speed, consistency and completeness of the set of TOs etc., which are difficult to ensure 
for the articulate expert, become not crucial.  
 In our prototype there is a small articulate expert in integration. A program-analyser of the type of the 
integrand is developed as an extension to the compiled expert - the muMATH package - to link it with the 
articulate expert and with the TOs. The articulate expert is based on heuristic rules for choosing an appropriate 
transformation for a given type of integrand. They are encoded as ROs that are applied only when the student is 
asking for help. If he continuously asks for help at every stage, he will see the problem solution step by step. 
Below is given a more detailed example of a RO on the second level of knowledge organisation in the 
integration tutor.  
 The second level of organisation corresponds to solving a particular integration problem. Problem 
solving consists of sequentially applying specific transformations to specific types of integrands. The student 
can usually solve a problem when he chooses an appropriate transformation at every intermediate stage and 
performs it correctly. "Appropriate transformation" is defined as one that leads to a simpler expression (for 
definition of "simpler" see (Slagle, 1963)). A similar way of instruction in integration is performed by the 
Kimball's Integration Tutor (Kimball, 1982). The elements on the second level denote different types of 
integrands. ROs encode the appropriate transformations that could be applied to them. Some of the elements in 
the second level are listed below:  
 2L1 - a standard type of integrand is obtained; 
 2L2 - an integrand that can be decomposed into a sum; 



 

 2L3 - a function of a linear function of the argument; 
 2L4 - a rational function is obtained; 
 2L5 - an integrand of type 1/(ax2+bx+c) is obtained; 
 2L6 - an integrand of type 1/(ax2+bx+c)n is obtained.  
 An example of a RO on the second level is given in table 2:  
 
Table 2 A RO on the second level (L2) 
 
Conditions: 2L4 
Effects:2L2 
Action:  Choose "decompose to partial fractions". Perform transformation. Display result. 
Passing criteria: none (The student can't make an error since he doesn't do anything.) 
Eval.criteria: intelligence: low; concentration: low; motivation: low; confidence: low 
 
 In our opinion the student must have the initiative while solving problems. Therefore, the system has to 
monitor his work unobtrusively by letting him choose at every stage the appropriate transformation and either 
asking him to carry it out, or making the domain expert perform it and display the result. In this way the student 
can either focus his attention on performing transformations or on solution planning. At any stage, however, the 
student can select a transformation that is not among the "appropriate" ones. In this case no error is encountered, 
because there is always a possibility that it can lead to a shorter solution in the particular case. The 
transformation is performed and the resulting type of integrand is added to the student model. In this way the 
system "follows" the student in his way of solving the problem. An example of two TOs which have different 
actions and different evaluation criteria is given in table 3.  
 
 
Table 3: Two examples of TOs on the second level differing with respect to their action and evaluation criteria. 
 
Conditions: type (2I) 
Effects: type (2R) 
Action: Display an integrand of type 2I and a menu of possible transformations. Accept student's choice. 
Perform the selected transformation and display result. 
Passing criteria: Check if an inapplicable transformation was chosen (these cases are few and can be 
anticipated). If so, add 2EWT (bug-element) to SML2. If not, analyse the type of the resulting integrand and add 
the corresponding element to SML2. 
Eval.criteria: intelligence: high; concentration: low; motivation: low or medium; confidence: high.  
 
 
Conditions: type (2I) 
Effect: type (2R)s 
Action: Display an integrand of type 2I and a menu of possible transformations. Accept student's choice.  
Invoke level 3 (L3) to check how the transformation is performed. Create a new SML2. 
Passing criteria: Depending on the state of SML3 (success or failure), add the corresponding element to SML2. 
Eval.criteria:  intelligence: low;  concentration: high; motivation: high;  confidence: low. 
 
 
3.3 Representing knowledge for developing skills  
 
 On the third level of domain knowledge organisation there are several sets of TOs. Each of them is 
supposed to represent knowledge needed for carrying out a given transformation, e.g. integration by parts, 
decomposition into partial fractions, substitutions, trigonometric substitutions etc. The elements of knowledge 
organisation correspond to certain sub-skills. For example, in table 4 3U1 means that the student knows how to 
solve problems of the type "Decompose into partial fractions A/((ax+b)(cx+d)...)", i.e. with linear factors in the 
denominator. 3U2 means that the student knows how to solve problems containing a quadratic factor in the 
denominator. The TOs represent the order in which these sub-skills should be taught and the appropriate 
teaching actions (problems to solve). The type of pedagogical knowledge on the third level is like a small 
curriculum for teaching one skill. The example in table 4 shows a TO for teaching a certain sub-skill of 



 

decomposing rational functions into partial fractions. All diagnostic procedures in the passing criteria add 
specific bug-elements to SML3 , if the corresponding bug is recognised. 
 When the third level is invoked during work on the second level (solving a particular integral), the 
appropriate set of TOs is chosen according to the type of transformation that has been chosen by the student. 
During the performance of the transformation, the student can make an error or ask for help. Then an 
appropriate RO on the third level will be executed. It can advice the student or give him a new problem, more 
directly connected with some feature that caused the error in the previous problem. The student's work on the 
second level will be temporarily discontinued to stress on the third level. In this way, instruction on each level is 
self-contained.  
 
Table 4: An example of a TO on the third level (L3). 
 
Conditions: 3U1 
Effects: 3U2 
Action: Show problem of the type  (Ax+B)/((ax2+bx+c)(dx+e)) and accept the student's answer. 
Passing criteria: Check for syntactic errors. Check for factorisation errors. Check for errors in finding the  
     type of the partial fractions. Check for errors in finding the constants in the numerators. 
Eval.criteria: intelligence: low; concentration: low;  motivation: low;  confidence: low. 
 
 
4 Student Modelling  
 
 Our goal was to find an approach for student modelling that could be applied to various domains. Since 
we wanted to have a model of the student's individual features and of his domain knowledge, we had to find out 
a general way for representing information and a general diagnostic technique for any of these different models.  
 
 
4.1 Modelling the Student's Domain Knowledge 
 
 In an ITS-shell, we need a domain-independent way of representation and updating the student model. 
We made a classification of existing student modelling techniques (Vassileva, 1990a) in order to find a general 
"kernel", applicable to different domains.  
 
4.1.1 Representation 
 
 The model of the student's domain knowledge contains three parts: a dynamic model, a list of bugs and 
a list of ROs that have been executed (history). The "dynamic model" (in the previous chapters denoted with 
SMLi ) is the most important part of the model, on which the three type of operators (TOs, ROs and DOs) are 
defined. Teaching and Diagnostic Operators add elements to it and the Remedial Operators delete bug-elements. 
The "dynamic model" is represented by a list containing the names of knowledge elements, that the system 
considers as "known" by the student. Our way of student modelling follows the overlay paradigm. However, no 
actual domain-expertise elements are represented in it, because an element of the domain-knowledge 
organisation may correspond to one or several of the elements of actual domain expertise, which can be of 
different type (e.g. procedural, declarative).  
 In this way, the elements in the student model serve as a "buffer" representing domain expertise in an 
understandable way for the domain-independent Pedagogical Component. Therefore, it is represented in an 
unified and homogeneous way for different domains and ways of organisation  of domain knowledge. 
"Homogeneous" means that the student's correct and incorrect knowledge is represented by the elements of 
domain knowledge organisation. A separate model of the student's domain knowledge is created when 
instruction is performed on a different level of domain knowledge organisation.  
 For example, we may have the following dynamic models of the student's knowledge at the same time:  
 (1L1 1L2 1L3) on the first level means that the student knows the standard integrals, the elementary 
methods for integration and how to solve expressions of the type 1/(x2+bx+c)n.  
 (2L4 2L3 (2L1) (2L5) (2L6)) on the second level means that during solving a given problem the 
student had to integrate first a rational function and he managed to transform it afterwards into a sum of partial 
fractions of three different types.  



 

 (3U2 3E3) on the third level means that the student knows how to decompose into partial fractions 
(Ax+B) / (ax2+bx+c)(dx+e), but doesn't know how to cope with expressions with a higher degree in the 
denominator, like  
  (Ax+B) / (ax2+bx+c)n(dx+e) or (Ax+B) / (ax2+bx+c)(dx+e)n.  
 The list of bug-elements that have ever entered the dynamic model is kept in the history. Its purpose is 
to provide additional information to help in resolving conflicts during diagnosis. For example, if there are two 
different elements corresponding to the error the student has made and one of them has already been once in the 
student's model, this one will be chosen, because students usually tend to repeat the same errors. The ROs 
applied during work at a given level are kept in the history too, in order to avoid repetition. 
 
4.1.2 Diagnosis 
 
The techniques used in known ITSs for diagnosis of the student's knowledge from his answers show a great 
diversity. However, all of them are based on comparison of the student's answer with an internal answer either 
generated by the domain-expert program, or obtained by the application of ad-hoc patterns or mechanisms. The 
process of selecting the pattern and of matching the results of this comparison with the elements representing 
the student's knowledge is usually complex and domain-specific and we don't believe that a general matching 
scheme exists. However, all known techniques have the same kernel:  
 comparison (student's answer, pattern) --> change(student model)   
 That is why the diagnosis in TOBIE is organised using this simple kernel.  
 We believe that in a given context (specific stage of solving a problem or performing a specific 
transformation) there is a limited number of possible matching schemes (the basic assumption underlying the 
"model-tracing" paradigm (Anderson & Reiser, 1985) and the patterns for comparison can be defined in 
advance. They are the results obtained by the domain expert-program, solving either the same problem or a 
modified problem depending on the type of the error that must be diagnosed. Depending on the context of 
comparison two types of diagnosis are carried out in TOBIE:  
 
 Diagnostic Procedures (Passing criteria) 
 
 Diagnosis of errors within the context of one TO (one answer) is undertaken by diagnostic procedures. 
Each one has the "comparison -> change" kernel and therefore has a standard structure. Each procedure is 
intended to diagnose a specific type of error and to add one element, corresponding to this error, to the student 
model. In order to ensure the appropriate context, a set of diagnostic procedures are associated with every TO: 
the "Passing criteria"-component containing a list of pointers to diagnostic procedures. These procedures are 
executed in a linear sequence until one of the patterns is triggered by the student's answer. See for example, the 
passing criteria of the TO on the third level in section 3.3.  
 A diagnostic procedure may contain also a call to a different level of knowledge organisation (i.e. the 
passing criteria of the TO on the first level in section 3.1.). Another level is invoked to trace the way the student 
solves a particular problem in order to find the reason of his erroneous result.  
 
 Diagnostic Operators  
 
 Diagnosis, however, should be carried out in a wider context than provided by a single TO. This type 
of diagnosis is realised by DOs. Their purpose and structure have been described in  section 2.4. The DOs 
provide a way of implementing the same kernel (comparison --> change) as any diagnostic procedure. However, 
they compare a pattern with the structure of the dynamic student model on a given level. The positive result of 
comparison may indicate a bug on the same or on a different level of knowledge organisation, so it may lead to 
adding a new element to the student model on any level.  
 DOs that analyse the dynamic student model on a given level are collected in sets; a set of DOs is 
provided for every level. The last DO in every set "fires" when the sequence of knowledge elements in the 
dynamic model becomes too long (longer than a given threshold) and no other DO can match a pattern in it. The 
first DO "fires" when the time of instruction has exceeded a threshold value. All DOs from the set provided for 
the given level of knowledge organisation are executed consecutively in two cases:  
 1) any time when a bug-element enters the student model;  
 2) repeating at a given period of time during instruction.  



 

 For example, one DO on the second level of knowledge organisation finds bad plans called "cycles" in 
the student's plan. A cycle means that the student has arrived at an integrand of a type, from which he has 
started several steps before. There are several exceptions, for example:  
 • the type which closes the circle is 2L1 (standard);  
 • the student has arrived to the integrand while solving independently integrands in a sum;  
 • the integrand is of a type that can be solved by integration by parts, leading to a recurrent or other 
formula for solving the integral, i.e. 1/(x2+a2)n and some trigonometric functions.  
 The DO for finding cycles in the student's plan has a passing criterion, containing a procedure that 
analyses the structure of the student model. Its conditions-part includes the name of the second level dynamic 
student model. The effect is adding an element corresponding to "cycle in the student's plan". The action of this 
DO is empty. The Pedagogical Component will decide, if a corresponding RO or a re-planning of instruction 
will be executed (this will be explained in section 5). 
 It is not always possible to decide in advance how to organise diagnosis. Sometimes a diagnosis 
conflict situation may occur and the Pedagogical Component will have to make a decision. Two diagnosis-
conflict situations and the possible pedagogical decisions, that can be taken by the system are shown below:  
 • What to do when there are differences in the student models at the same level of organisation and for 
the same type of problems? Usually such differences appear as a result of learning or forgetting, that has 
happened in the meantime. The trend in the sequence of student models can be significant in this case. A 
simplified "learning frontier"- interpretation (Goldstein, 1982) is possible via including an appropriate DO on 
the given level. For example, on the first level we can have the following DO: The type of problems is 
considered as "mastered" and the corresponding element is added to the student model, when either more than 
65% from the given problems were solved correctly or more than 90% from the second half of the sequence of 
problems (the second level models for these problems show success). It is assumed that learning has occurred 
although a lot of problems were not solved correctly.  
 • If there are two or more diagnoses that account for the student's behaviour, which one will be chosen? 
There are several possibilities:  
  A. to choose the first diagnosis, explaining the student's behaviour;  
  B. to choose one of the candidates that has already been in the student model (check the 
history), because students tend to repeat the same errors;  
  C. to call another level of organisation in attempt to find additional evidence for one of the 
hypotheses, e.g. "vertical extension" (Self & Dillenbourg, 1990);  
  D. to give the student another problem of the same type, e.g. "horizontal extension", (Self & 
Dillenbourg, 1990);  
  E. to give the student a special problem that will discriminate between the different 
hypotheses.  
  Every specific conflict situation can be treated in many different ways and the decision which one to 
choose relies more on general pedagogical than on domain-dependent considerations. The teacher can decide 
which of them will be executed by choosing an appropriate "character" of the Pedagogical Component.  This 
shall be discussed in more details in section 5.2.  
 
4.2 Modelling the Student's Individual Characteristics 
 
 Wenger (Wenger, 1987) explains the lack of attempts to model the student's individual characteristics 
within ITSs with the lack of representational language and diagnostic techniques. The point is to define a set of 
parameters (domain-independent) that will allow qualitative evaluation of the student's individual 
characteristics, and methods (domain-specific) to update the values of these parameters according to the 
student's performance. The only known system, which models the user's individual characteristics is GRUNDY 
(Rich, 1983), which uses the method of vocabulary analysis. It is questioned (Carroll & McKendree, 1987) 
whether the user's vocabulary can provide adequate information about his individual features, especially in 
domains where there is a fixed terminology.  
 However, we can view instruction as a field of the student's performance apart from the specific 
subject he is been taught. Then we can consider the psycho-pedagogical type (PP-type) of the teaching actions 
that are used successfully with the particular student as a "user's vocabulary". If we define the user's vocabulary 
in this way, we can use vocabulary analysis. The representation of the model is based on evaluation of 
parameters. Diagnosis makes use of statistics of the different types of "words" used by the student.  
 How is a "word" defined? Teaching actions can be classified into different clusters with respect to the 
individual characteristics the student must have, in order to be able to learn from the teaching action. For 



 

example, self-dependence and confidence, preference of abstract or a presentation style, inductive or deductive 
style of thinking etc. Since diagnosis has to differentiate between teaching actions, the PP-type of a teaching 
action is indicated in the list of "evaluation criteria" in every TO.  
 The evaluation criteria in fact are the domain-independent characteristics of the specific teaching 
action. They allow the system to make conclusions about the domain-independent individual characteristics of 
the student from his domain-specific actions. Some examples of individual features and the types of actions, by 
which they can be inferred are listed below:  
 • Inductive type of learning - TOs and ROs whose action shows textual explanations or solved example 
problems. 
 • Deductive type of learning - the student learns better and recovers from errors easier if he is given 
another appropriate problem to solve. 
 • Self-confidence - the student prefers to solve problems with a minimum of help or guidance from the 
system. 
 This "kernel" set of individual characteristics together with standard psychological characteristics like 
level of concentration, intelligence, motivation can be used in an arbitrary domain. It could be extended to 
include additional characteristics important for any specific domain. The model of the individual student 
characteristics is represented by a set of parameters and their values. Two different methods for diagnosis are 
used. The method of vocabulary analysis is based on statistics of the values of the evaluation criteria of 
successfully used TOs and ROs. A psychological pre-test and methods for quantitative evaluation of certain 
personal characteristics (Wittig, 1986) are used for initialising the values. The programs that make the statistics 
and analyse the results to update the student model are included in the domain-independent Pedagogical 
Component (more specifically, in the Executor program).  
 The individual student model in TOBIE is still rudimentary. It contains only five characteristics which 
can take discrete values: intelligence, self-confidence, motivation, concentration, preferred type of teaching 
actions. 
 
 
 
5 Pedagogical Decisions  
 

 The domain-independent Pedagogical Component contains two sub-components, adjustable by the 
teacher : a Planner and Executor. Depending on the context of interaction with the student the Pedagogical 
Component can take global and local pedagogical decisions.  
 

5.1 Global level  
 
 The global-level pedagogical decisions are connected with instructional planning. The Planner creates 
dynamically a plan of instruction for any level of domain-knowledge organisation. It can generate sequences of 
knowledge elements that lead from the current state of the dynamic student model to the goal state. During the 
teaching session the Planner can be invoked again to modify or exchange the plan according to the changing 
situation (goals of instruction, student's knowledge and resources). The planning process is controlled by  
parameters, adjustable by the teacher. Through these parameters, for example, the way of instructional planning 
can be chosen - automatic (the plan is created by the system) or not automatic (the plan is created by the 
teacher). Another parameter allows the teacher to mark certain elements in the knowledge decomposition on the 
level of planning, which will be paid more attention during instruction. The teacher can participate in the 
planning of the time-schedule by assigning a given value of another parameter.  
 After the Planner has found all possible paths to the goal, an Optimizer-program is invoked to choose 
one of them as a current plan. An optimum path can be, for example, the shortest path, the path that does not 
contain certain knowledge element etc. The Optimizer uses criteria that can be combined. Once chosen, the plan 
is followed until an obstacle in the student model or in the environment appears. In this case we say that a local 
event occurs and a local-level decision has to be taken. 
 
 
 5.2 Local level 
 



 

 The local-level pedagogical decisions are taken during the execution of a plan. The Executor is a 
program that chooses TOs that, when applied to the dynamic student model will carry it to the goal-state 
according to the plan. If there are several TOs that can do a desired transformation of the student model, the one 
whose evaluation criteria match best the individual student model is chosen.  
 The Executor has to take decisions in case of unexpected situations that arise during the following of 
the plan. Three types of these situations can be defined:  
 1) The student: 
  a. asks for help, or 
  b. an error or is diagnosed by a diagnostic procedure, or 
  c. a DO finds a misconception, explaining a sequence of bugs.  
 In all these cases the current TO cannot achieve its effects. Therefore, the conditions for some of the 
next TOs in the plan will not be present in the student model and at a given stage it will be impossible to 
continue following the plan. Since a bug-element enters the student model, conditions for execution of a RO 
appear.  
 2) The current TO or a DO makes a call of the system on another level of organisation of domain 
knowledge which is more appropriate for teaching the student or for diagnosing a specific error.  
 3) No applicable TO can be found.  
 
 The decisions that the Executor has to make in situations 1) and 2) can be generalised. We define two 
types of reactions: opportunistic and plan-based. Within an opportunistic reaction the system acts so, as to 
serve the needs of the moment and within a plan-based reaction the system reconsiders the plan. Whether or not 
it is necessary to change the plan depends on the situation; the Planner will be instructed by pointing out which 
of the optimising criteria will be given the highest weight. An opportunistic reaction for situations of type 1) is 
to execute an appropriate RO for the bug, misconception or call for help immediately. In case of an situation of 
type 2) the system executes the TO's call for teaching on another level of domain knowledge organisation. In 
case 3) no opportunistic reaction is possible.  
 A plan-based reaction will cause invoking the Planner to re-plan instruction with a given optimisation 
criterion, specific for the situation and the individual student. Re-planning does not necessarily mean that the 
current plan will be abandoned. The resources, goals and the student model will be reconsidered and the optimal 
way to continue will be chosen. For example, in case of situation 1)-b, a possible plan-based reaction is to keep 
on following the same plan, without letting the student know he has made an error, if only situations of this kind 
are occurring. This "keeping silent" will end when either a 1)-c happens (DO finds the misconception 
underlying the sequence of bugs, or the time-limit is exhausted) or when the student asks for help (situation 1)-
a) or situations of type 2) or 3) occur.  
 The plan-based approach gives rise to situations where a number of alternative Pedagogical decisions 
are possible. Consider the following case: The current local situation of type 1) is due to "firing" the last DO on 
the given level (see section 4.1.2.). Let us suppose now that the opportunistic-type of reaction is chosen. In this 
case the bugs in the student model will be treated independently with ROs. So, there are several errors (bugs, 
bad-plans, misconceptions) in the same time in the student model on one level or in models on different levels. 
In what order should the ROs be executed? For example, let us suppose that the student has chosen several 
times inappropriate transformations during solving an integration problem. Which of them has to be corrected 
first?  
 If the student is decisive, self- confident, it might be better to start with the one that first entered the 
model. If he is indecisive and shy, may be it will be wrong to discourage him by showing that his way was 
wrong from the beginning.  
 The same question arises when two or more bugs are diagnosed on different levels of organisation 
simultaneously. Is it good, for example, to start with executing a RO for a bug on the second level when there 
are also "performance-bugs" on the third level? Isn't it better to execute ROs for the performance bugs, to show 
the student that even if he had performed correctly the transformations, he wouldn't have obtained the solution?  
 To decide in this case, a human-teacher should know more about the student's individual features, 
motivation, need for criticism etc. We don't believe that there is a single correct answer to these questions. That 
is why we decided to create different "characters" of the Executor and ask the teacher to choose one of them 
before the beginning of the teaching session. We define "character" of the Executor as follows: The character is 
a set of rules for choosing a type of reaction: opportunistic or plan-based in case of unexpected situation. These 
rules operate on information coming from:  
 A. the model of the student's domain knowledge (including the record of his bugs and of the ROs 
used);  



 

 B. the individual student model;  
 C. the type of the situation;  
 D. the resources available (time, equipment, memory).  
 The rules in case of identical data coming from these sources of information, can be radically different 
in the different characters. For example, Character 1 can contain the following rule:  
 Rule 1: If the student is concentrated, consistent and self-confident and there is already a bug-element 
in the student's model  on this level about which the system has chosen not to tell the student and the student is 
asking for help now, then choose an opportunistic reaction (a RO for the bug will  be executed).  
 
 Since the student is self-confident, concentrated and consistent, the Executor assumes that the reason of 
his getting stuck and asking for help is the error he has made before and helps him by pointing it out to the 
student.  
 The rule for the same situation in Character 2 has a different effect; a plan-based reaction is chosen. 
The system will keep quite and discard the student's call for help. The Executor supposes that the student is 
following a logical plan of solving the problem and wishes to make the student follow it as long as possible. The 
fact that the student is self-confident shows that it will be more useful to criticise the whole plan when it turns 
out to be fruitless (when a DO finds a bad plan).  
 It is possible to define explicit domain-independent rules that interpret different combinations of these 
data-sources into either opportunistic or plan-based reactions. At present, six characters are defined. We intend 
to observe the decisions taken by the system with different characters and different individual student models. 
We believe this will help to find the significant individual student's features for taking pedagogical decisions.  
 
 
6 Implementation issues 
 
 The integration tutor was implemented on an IBM PC/AT under the DOS 3.30 operation system. The 
languages used were PASCAL and muSIMP. The system is equipped with an authoring component which 
allows the teacher to create a problem base and to choose a character of the pedagogical component. The 
authoring component invokes the domain expert to analyse every new problem in the problem base and to 
create a set of TOs, ROs and DOs for it. The automatic creating of the sets of operators was not our purpose 
initially; it can not be done in an arbitrary domain. However, it turned out to be possible for the narrow domain 
of integration and for one type of teaching action (problem solving). The response time is satisfactory. 
 Implementing the three different levels of organisation of domain knowledge was, in fact, equivalent to 
implementing three ITSs in different domains, since the nature of the tasks, the teaching strategies (incl. 
managing the initiative in the dialogue) and the criteria for success are fundamentally different. However, the 
unified way of knowledge representation, of student modelling and taking pedagogical decisions provided by 
the architecture, allows a rapid prototyping. The problem of building a whole system is reduced to the problem 
of finding an appropriate way of defining the elements of knowledge organisation for the particular domain and 
level. In general, this is a non-trivial problem of knowledge engineering, however, there have been already 
methods proposed for knowledge structuring (Grazotto et. al, 1990). 
 
 
7 Directions of future work 
 
 There are several different directions in which this project may be further developed. Some of them 
are:  
 1) An object- oriented representation of TOs. This will allow representing explicitly different types of 
links between the elements of knowledge organisation, e.g. precedence, analogy, generality. At present a given 
set of TOs encodes only one type of link. 
 2) Elaborating pedagogical expertise; defining new rules and characters, new situations in which 
pedagogical decisions are needed and carrying out experiments with real students;  
 3) Applying the existing architecture to different domains, e.g. chemistry, language learning and 
development of commercial systems and comparing the results of teaching students with the results obtained by 
applying other systems. Evaluating the effectiveness of TOBIE's architecture, i.e. how much human effort is 
saved by applying it in comparison with other approaches for building intelligent tutors is needed in order to 
justify the label "ITS-shell". 
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