

TOBIE: an Implementation of a Domain-Independent
ITS-Architecture in the Domain of Symbolic Integration

Julita Vassileva

Software Engineering Department

Institute of Mathematics
1090 Sofia, P.O. Box 373, Bulgaria

Universität der Bundeswehr München

85579 Neubiberg, Germany
e-mail: jiv@informatik.unibw-muenchen.de

ABSTRACT
An implementation of an ITS-shell architecture in a specific domain is described.
Various features of the architecture are demonstrated on examples from the domain.
Special attention is paid to the issues of domain-knowledge representation, student
modelling (incl. diagnosis), the pedagogical decisions taken by the system in both a
tutoring and coaching style of instruction.

1 Introduction

 During the second half of the last decade one of the focuses of interest in Intelligent Tutoring Systems
(ITS) research was finding architectures applicable to different domains. A practical stream in this direction is
the development of ITS-shells [Vass90], (Major & Reichgeld, 1992); (Nicaud, 1992); (Murray & Woolf, 1992).
 The major problem in developing an ITS-shell is to find a unified way of representing the knowledge
to enable the system to model the student and to take pedagogical decisions. Therefore, the main goal of our
work was finding a unified way of representing domain-specific knowledge that integrates expert knowledge
about the domain (e.g. the goals and sub-goals in solving a problem), pedagogical knowledge (e.g. the
curriculum), diagnostic knowledge (how to interpret student's actions) and, in addition, a unified scheme
across different domains for taking pedagogical decisions was created. These issues are presented in the
paper. Although all examples are related to the domain of integration, in which the prototype TOBIE was
implemented, they can be easily generalised.

2 Architecture

 The architecture of the system consists of the following components: a domain-independent
Pedagogical Component, an Authoring Component (Administrator), a model of the student's domain knowledge
(we shall call it briefly Student Model) and a model of the student's individual characteristics (see Figure 1).

 The "kernel" of the system is a Domain Knowledge Base. It contains
 • a black-box domain expert program for solving problems;
 • an integrated representation of all domain-dependent knowledge that is needed by the
invariant Pedagogical Component to lead instruction and to create and update the two student models.
 According to the target level of instruction and the author's viewpoint on the subject, this knowledge
can be organised in various ways.

2.1 Knowledge Organisation

 With "knowledge organisation" we denote:
 • Decomposition of knowledge into primitive elements (learnable units, beliefs, concepts, problem
solving steps etc.). The elements of knowledge decomposition can be chosen in various ways according to the

different levels of knowledge in a given domain, or to different viewpoints. There are special "bug"- elements
that correspond to diagnosable errors, misconceptions or bad-plans.
 • Configuration of these elements by defining different types of links, like links of precedence,
analogy, generality etc. The configuration of these elements can also be done in various ways. It can express:
 1) higher-level domain-expert knowledge (e.g. problem solving strategies);
 2) domain-dependent pedagogical knowledge (e.g. in what order to teach the elements of knowledge).
 The Domain Knowledge Base can contain various types of knowledge organised on different levels
(see Figure 2). Since the main unit in representing the domain-knowledge organisation is called a Teaching
Operator, this architecture is called a Teaching Operators-Based Instructional Environment (TOBIE).
 In the next section we describe the representation of domain knowledge in TOBIE that allows wide
applicability, modularity, ease of extending and some psychological pertinence.

CREATING
A

DKB

AUTHORING
COMPONENT

TUNING THE

PEDAGOGICAL

COMPONENT

PLANNER●

EXECUTOR●

INDIVIDUAL

STUDENT

DIAGNOSIS

●

PEDAGOGICAL
COMPONENT

INDIVIDUAL

STUDENT

DIAGNOSIS

PLANNER

EXECUTOR

DOM AIN KNO WL EDG E B ASE

DOMAIN
EXPERT

LIBRARY
● TEACHING ACTIONS

● DIAGNOSTIC PROCED.

● PROBLEM CONDITIONS

DIAGNOSTIC OPERATORS

REMEDIAL OPERATORS

TEACHING OPERATORS

INDIVIDUAL

STUDENT
MODEL

STUDENT
MODEL

Figure 1: The general ITS -architecture

2.2 Teaching Operators (TOs)

 A Teaching Operator is defined as: TO: SM ---> SM , i.e. a TO on a given level of knowledge
organisation is a function over the space of possible states of the student's model. The idea of Teaching
Operators is connected with instructional planning (Peachey & McCalla, 1986), (Wenger, 1987). We have
generalised this notion (Vassileva, 1990b). The TOs are structures representing in an integrated way the
different types of domain-dependent knowledge about:
 • the domain-specific teaching actions;
 • when it is appropriate to apply them;
 • what possible errors could be done.

 A TO is a rule-like structure, which conditions and effects are the names of elements on a given level
of organisation of domain knowledge. A TO is invoked, if the student model contains its conditions. After a
successful execution of a TO, the diagnosed effect-elements are added to the student model.
 Every TO is associated with a procedure called "teaching action" that carries out the interactions with
the student. It can be either a teaching or a problem-solving step, depending on the level of organisation of the
TO.
 The context of a teaching action is narrow enough to allow including the knowledge needed for
diagnosing the student's answers. Therefore, a list of diagnostic procedures called "passing criteria" is included
in the TO's structure. These procedures analyse the student's answer according to the context of the teaching
action. There are two groups of procedures. The first group tries to test the correctness of the student's answer
and add the effects of the TO to the student model. The procedures from the second group are activated one by
one, when no procedure of the first group has succeeded. Their purpose is to diagnose the bug or misconception
that caused the error. If any of them succeeds, the corresponding bug-element is added to the student model
instead of the TO's effects. Since several TOs can share the same diagnostic procedures and teaching actions,
they are stored separately in a "Library". The "passing criteria" and "teaching actions" parts of the TOs contain
pointers to the actual procedures.
 The success of TOs with different types of teaching actions can give evidence about some individual
characteristics of the student. For this reason a list of parameters called "evaluation criteria" is attached to the
TO's structure. These parameters describe the teaching action from a pedagogical point of view. They are used
by statistical mechanisms in the Pedagogical Component for creating and updating the Individual Student
Model.

curriculum 2

curriculum 1

sets of teaching operators

LEVEL 1

LEVEL 2

problem solving

LEVEL 3

skill 2

skill 1

Figure 2: Three levels of knowledge organisation in TOBIE

2.3 Remedial Operators (ROs)

 RO: SM* ---> SM , where SM* denotes the set of possible states of the student model that contain
elements, corresponding to bugs, misconceptions (bad plans) or undiagnosed errors. The purpose of ROs is to
remove the bug-elements from the student model, therefore the conditions of ROs are bug-elements. The result
of a successful execution of a RO is that its conditions are removed from the student model. The action of a RO
can be any appropriate teaching action: text, providing a hint or help, letting the student see a possible next step
in the solution, explanation or giving a new problem. Of course, the student may not be able to recover - he can
make another error. Again a list of diagnostic procedures (passing criteria) checks and if this is the case, a new
bug-element is added to the student model. The unused effects-part of a RO can represent additional conditions.
It can contain a list of elements, indicating when this particular type of remedial for a given bug will be most
appropriate (e.g. intermediate step reached during problem solving; facts from the history of the tutoring
session, contained in the list of bugs or in the student models on the same level for the same type of problems).
 For example, if the student has not selected an appropriate transformation for an integrand of a given
type, several ROs can help him choose the appropriate transformation, some of them requiring additional

conditions, e.g. that the student has already successfully chosen the correct transformation when he obtained an
integrand of the same type before. The action of such a RO will not show the appropriate transformation
directly, but will make use of the past experience e.g. "Remember what you did before, when you obtained the
integrand...".

2.4 Diagnostic Operators (DOs)

 DO: SML1 ---> SML2, where SML1 and SML2 are the sets of possible states of the model of student
knowledge on possibly different levels of knowledge organisation. The purpose of the DOs is to find the signs
of bugs, misconceptions, bad-plans by analysing the contents and structure of the student model. The conditions
and the effects of a DO can be elements on different levels of knowledge organisation. The passing criteria are
procedures that analyse the structure of the "condition-level" model and try to find configurations of elements
that are significant for bugs on the "effect-level" student model. The action of a DO can be empty, i.e. it may not
involve any particular teaching action. It can also be a procedure that invokes the system with a set of TOs,
representing the "effect-level" domain knowledge. On this level the system may try to remove the bug by an
appropriate RO. An example of a DO is given in section 4.1.2.

3 Domain Knowledge Representation

 The TOBIE-architecture allows a integrated and unified representation of domain-dependent
knowledge. "Integrated" means that different types of knowledge, needed by the Pedagogical Component and
for modelling both the student's knowledge and his individual characteristics are represented together with
operators (TOs, ROs, DOs). "Unified" means that knowledge on different levels of organisation and from
different viewpoints within a fixed domain or in various domains is represented by means of operators having
the same structure.

3.1 Representing curricular knowledge

 Knowledge about the curriculum of the subject is needed by the Pedagogical Component to
dynamically plan instruction. It can be easily represented with a set of TOs. The first level of knowledge
organisation in our prototype corresponds to the curriculum. The elements of knowledge decomposition
represent the methods of integration the student must learn. The TOs encode the order in which these methods
should be taught. The teaching actions are explanations, examples and demonstrations of how a given method is
performed etc. In the example below the teaching action is solving a sequence of problems of a given type.
Several sets of TOs can be created on this level corresponding to different curricula on the subject of
integration. Here are some of the elements in the decomposition of domain knowledge - they denote that the
student knows:
 1L1 - standard integrals;
 1L2 - elementary methods for integration;
 1L3 - integration of expressions of the type 1/(ax2+bx+c)n;
 1L4 - integration of rational functions;
 1L5 - integration of rational functions of sin and cos ;
 1L6 - integration of Abel's functions etc.
 An example of a TO on this level is given in table 1.

Table 1: A TO on the first level (L1).

Conditions: 1L1, 1L3
Effects: 1L4
Action: Procedure which creates a sequence of problems and presents them to the student
Passing criteria
Invoke the expert to solve the problem. Compare the answer with the student's answer. If they are identical, the
name of the problem is added to the SML1. If they differ, the system is activated on Level 2 (L2) to trace the
way of solving the problem. A SML2 is created. Depending on its state, after returning from L2 the name of the
problem is added or not to the SML1.

Eval.criteria: intelligence: medium or high; concentration: high, confidence: high, motivation: high.

 DOs on the first level analyse the structure of the student model after every change and try to find a
configuration indicating success. In such a case the list of problem-names will be deleted and 1L4 will be added
in the 1-level student model, otherwise instruction continues until the end of the sequence of problems and the
TO fails to obtain its effect.
 In fact, on this level no actual domain expertise is represented. A system with a set of TOs for only this
level will not behave more "intelligently" than a traditional CAI program, containing a script of instruction (but
it is generated dynamically during instructional planning, see section 5.1.).

3.2 Representing knowledge for planning the problem solution

 Knowledge representation with TOs is also appropriate for representing articulate (glass-box) domain
expertise. Since the TOs are productions, this way of representation is applicable for tasks that are
decomposable into independently solvable sub-tasks. Typical tasks of that type are those for strategy finding (in
planning, games, synthesis of programs), problems whose solutions are unordered sequences of actions (e.g.
symbolic integration), problems for creating logical deductions and theorem-proving. Even some problems
whose solution can be represented with an ordered sequence of actions could be well presented with TOs, since
the search for some sub-sequences can be done in an arbitrary order (e.g. the towers of Hanoi problem).
Therefore the class of domains in which problem-solving knowledge can be represented by TOs is very wide.
 One of the motives for choosing the subject of elementary integration for the first application of the
TOBIE-architecture, was that symbolic integration is a classic example of a domain where heuristic production
rules can be used for encoding articulate expertise. All that was needed was to encode some of the heuristic
rules, invented by Slagle (Slagle, 1963), with ROs and in this way to create an articulate domain expert for
provision of help, advice or for correction of the student's solution path.
 The uniform way of knowledge representation allows using the same inference mechanisms at different
levels of knowledge organisation. For example, a planning program could serve both as an instructional planner
at a curriculum level and as a planner of the problem-solution at a level, corresponding to the decomposition of
the main goal into sub-goals. In this way, a given set of TOs and a domain-independent inference mechanism
compose a simple articulate domain expert at a given level of organisation.
 Building an articulate expert is a non-trivial task. The architecture, however, is entirely modular and
allows combining "pieces" of articulate and compiled expertise. The articulate "pieces" of expertise are stored as
sets of ROs. A set of ROs may not be able to solve a domain problem entirely (the rules are heuristic, there is
no guarantee that the transformation that they recommend is the best choice for the specific problem). They are
used when it is necessary to help the student locally, at a fixed stage of the problem solving process. A similar
idea for combining articulated with compiled expertise has been implemented in WEST [(Burton & Brown,
1982)], but in a different way. By combining pieces of articulate and compiled expertise a lot of requirements as
robustness, reliability, speed, consistency and completeness of the set of TOs etc., which are difficult to ensure
for the articulate expert, become not crucial.
 In our prototype there is a small articulate expert in integration. A program-analyser of the type of the
integrand is developed as an extension to the compiled expert - the muMATH package - to link it with the
articulate expert and with the TOs. The articulate expert is based on heuristic rules for choosing an appropriate
transformation for a given type of integrand. They are encoded as ROs that are applied only when the student is
asking for help. If he continuously asks for help at every stage, he will see the problem solution step by step.
Below is given a more detailed example of a RO on the second level of knowledge organisation in the
integration tutor.
 The second level of organisation corresponds to solving a particular integration problem. Problem
solving consists of sequentially applying specific transformations to specific types of integrands. The student
can usually solve a problem when he chooses an appropriate transformation at every intermediate stage and
performs it correctly. "Appropriate transformation" is defined as one that leads to a simpler expression (for
definition of "simpler" see (Slagle, 1963)). A similar way of instruction in integration is performed by the
Kimball's Integration Tutor (Kimball, 1982). The elements on the second level denote different types of
integrands. ROs encode the appropriate transformations that could be applied to them. Some of the elements in
the second level are listed below:
 2L1 - a standard type of integrand is obtained;
 2L2 - an integrand that can be decomposed into a sum;

 2L3 - a function of a linear function of the argument;
 2L4 - a rational function is obtained;
 2L5 - an integrand of type 1/(ax2+bx+c) is obtained;
 2L6 - an integrand of type 1/(ax2+bx+c)n is obtained.
 An example of a RO on the second level is given in table 2:

Table 2 A RO on the second level (L2)

Conditions: 2L4
Effects:2L2
Action: Choose "decompose to partial fractions". Perform transformation. Display result.
Passing criteria: none (The student can't make an error since he doesn't do anything.)
Eval.criteria: intelligence: low; concentration: low; motivation: low; confidence: low

 In our opinion the student must have the initiative while solving problems. Therefore, the system has to
monitor his work unobtrusively by letting him choose at every stage the appropriate transformation and either
asking him to carry it out, or making the domain expert perform it and display the result. In this way the student
can either focus his attention on performing transformations or on solution planning. At any stage, however, the
student can select a transformation that is not among the "appropriate" ones. In this case no error is encountered,
because there is always a possibility that it can lead to a shorter solution in the particular case. The
transformation is performed and the resulting type of integrand is added to the student model. In this way the
system "follows" the student in his way of solving the problem. An example of two TOs which have different
actions and different evaluation criteria is given in table 3.

Table 3: Two examples of TOs on the second level differing with respect to their action and evaluation criteria.

Conditions: type (2I)
Effects: type (2R)
Action: Display an integrand of type 2I and a menu of possible transformations. Accept student's choice.
Perform the selected transformation and display result.
Passing criteria: Check if an inapplicable transformation was chosen (these cases are few and can be
anticipated). If so, add 2EWT (bug-element) to SML2. If not, analyse the type of the resulting integrand and add
the corresponding element to SML2.
Eval.criteria: intelligence: high; concentration: low; motivation: low or medium; confidence: high.

Conditions: type (2I)
Effect: type (2R)s
Action: Display an integrand of type 2I and a menu of possible transformations. Accept student's choice.
Invoke level 3 (L3) to check how the transformation is performed. Create a new SML2.
Passing criteria: Depending on the state of SML3 (success or failure), add the corresponding element to SML2.
Eval.criteria: intelligence: low; concentration: high; motivation: high; confidence: low.

3.3 Representing knowledge for developing skills

 On the third level of domain knowledge organisation there are several sets of TOs. Each of them is
supposed to represent knowledge needed for carrying out a given transformation, e.g. integration by parts,
decomposition into partial fractions, substitutions, trigonometric substitutions etc. The elements of knowledge
organisation correspond to certain sub-skills. For example, in table 4 3U1 means that the student knows how to
solve problems of the type "Decompose into partial fractions A/((ax+b)(cx+d)...)", i.e. with linear factors in the
denominator. 3U2 means that the student knows how to solve problems containing a quadratic factor in the
denominator. The TOs represent the order in which these sub-skills should be taught and the appropriate
teaching actions (problems to solve). The type of pedagogical knowledge on the third level is like a small
curriculum for teaching one skill. The example in table 4 shows a TO for teaching a certain sub-skill of

decomposing rational functions into partial fractions. All diagnostic procedures in the passing criteria add
specific bug-elements to SML3 , if the corresponding bug is recognised.
 When the third level is invoked during work on the second level (solving a particular integral), the
appropriate set of TOs is chosen according to the type of transformation that has been chosen by the student.
During the performance of the transformation, the student can make an error or ask for help. Then an
appropriate RO on the third level will be executed. It can advice the student or give him a new problem, more
directly connected with some feature that caused the error in the previous problem. The student's work on the
second level will be temporarily discontinued to stress on the third level. In this way, instruction on each level is
self-contained.

Table 4: An example of a TO on the third level (L3).

Conditions: 3U1
Effects: 3U2
Action: Show problem of the type (Ax+B)/((ax2+bx+c)(dx+e)) and accept the student's answer.
Passing criteria: Check for syntactic errors. Check for factorisation errors. Check for errors in finding the
 type of the partial fractions. Check for errors in finding the constants in the numerators.
Eval.criteria: intelligence: low; concentration: low; motivation: low; confidence: low.

4 Student Modelling

 Our goal was to find an approach for student modelling that could be applied to various domains. Since
we wanted to have a model of the student's individual features and of his domain knowledge, we had to find out
a general way for representing information and a general diagnostic technique for any of these different models.

4.1 Modelling the Student's Domain Knowledge

 In an ITS-shell, we need a domain-independent way of representation and updating the student model.
We made a classification of existing student modelling techniques (Vassileva, 1990a) in order to find a general
"kernel", applicable to different domains.

4.1.1 Representation

 The model of the student's domain knowledge contains three parts: a dynamic model, a list of bugs and
a list of ROs that have been executed (history). The "dynamic model" (in the previous chapters denoted with
SMLi) is the most important part of the model, on which the three type of operators (TOs, ROs and DOs) are
defined. Teaching and Diagnostic Operators add elements to it and the Remedial Operators delete bug-elements.
The "dynamic model" is represented by a list containing the names of knowledge elements, that the system
considers as "known" by the student. Our way of student modelling follows the overlay paradigm. However, no
actual domain-expertise elements are represented in it, because an element of the domain-knowledge
organisation may correspond to one or several of the elements of actual domain expertise, which can be of
different type (e.g. procedural, declarative).
 In this way, the elements in the student model serve as a "buffer" representing domain expertise in an
understandable way for the domain-independent Pedagogical Component. Therefore, it is represented in an
unified and homogeneous way for different domains and ways of organisation of domain knowledge.
"Homogeneous" means that the student's correct and incorrect knowledge is represented by the elements of
domain knowledge organisation. A separate model of the student's domain knowledge is created when
instruction is performed on a different level of domain knowledge organisation.
 For example, we may have the following dynamic models of the student's knowledge at the same time:
 (1L1 1L2 1L3) on the first level means that the student knows the standard integrals, the elementary
methods for integration and how to solve expressions of the type 1/(x2+bx+c)n.
 (2L4 2L3 (2L1) (2L5) (2L6)) on the second level means that during solving a given problem the
student had to integrate first a rational function and he managed to transform it afterwards into a sum of partial
fractions of three different types.

 (3U2 3E3) on the third level means that the student knows how to decompose into partial fractions
(Ax+B) / (ax2+bx+c)(dx+e), but doesn't know how to cope with expressions with a higher degree in the
denominator, like
 (Ax+B) / (ax2+bx+c)n(dx+e) or (Ax+B) / (ax2+bx+c)(dx+e)n.
 The list of bug-elements that have ever entered the dynamic model is kept in the history. Its purpose is
to provide additional information to help in resolving conflicts during diagnosis. For example, if there are two
different elements corresponding to the error the student has made and one of them has already been once in the
student's model, this one will be chosen, because students usually tend to repeat the same errors. The ROs
applied during work at a given level are kept in the history too, in order to avoid repetition.

4.1.2 Diagnosis

The techniques used in known ITSs for diagnosis of the student's knowledge from his answers show a great
diversity. However, all of them are based on comparison of the student's answer with an internal answer either
generated by the domain-expert program, or obtained by the application of ad-hoc patterns or mechanisms. The
process of selecting the pattern and of matching the results of this comparison with the elements representing
the student's knowledge is usually complex and domain-specific and we don't believe that a general matching
scheme exists. However, all known techniques have the same kernel:
 comparison (student's answer, pattern) --> change(student model)
 That is why the diagnosis in TOBIE is organised using this simple kernel.
 We believe that in a given context (specific stage of solving a problem or performing a specific
transformation) there is a limited number of possible matching schemes (the basic assumption underlying the
"model-tracing" paradigm (Anderson & Reiser, 1985) and the patterns for comparison can be defined in
advance. They are the results obtained by the domain expert-program, solving either the same problem or a
modified problem depending on the type of the error that must be diagnosed. Depending on the context of
comparison two types of diagnosis are carried out in TOBIE:

 Diagnostic Procedures (Passing criteria)

 Diagnosis of errors within the context of one TO (one answer) is undertaken by diagnostic procedures.
Each one has the "comparison -> change" kernel and therefore has a standard structure. Each procedure is
intended to diagnose a specific type of error and to add one element, corresponding to this error, to the student
model. In order to ensure the appropriate context, a set of diagnostic procedures are associated with every TO:
the "Passing criteria"-component containing a list of pointers to diagnostic procedures. These procedures are
executed in a linear sequence until one of the patterns is triggered by the student's answer. See for example, the
passing criteria of the TO on the third level in section 3.3.
 A diagnostic procedure may contain also a call to a different level of knowledge organisation (i.e. the
passing criteria of the TO on the first level in section 3.1.). Another level is invoked to trace the way the student
solves a particular problem in order to find the reason of his erroneous result.

 Diagnostic Operators

 Diagnosis, however, should be carried out in a wider context than provided by a single TO. This type
of diagnosis is realised by DOs. Their purpose and structure have been described in section 2.4. The DOs
provide a way of implementing the same kernel (comparison --> change) as any diagnostic procedure. However,
they compare a pattern with the structure of the dynamic student model on a given level. The positive result of
comparison may indicate a bug on the same or on a different level of knowledge organisation, so it may lead to
adding a new element to the student model on any level.
 DOs that analyse the dynamic student model on a given level are collected in sets; a set of DOs is
provided for every level. The last DO in every set "fires" when the sequence of knowledge elements in the
dynamic model becomes too long (longer than a given threshold) and no other DO can match a pattern in it. The
first DO "fires" when the time of instruction has exceeded a threshold value. All DOs from the set provided for
the given level of knowledge organisation are executed consecutively in two cases:
 1) any time when a bug-element enters the student model;
 2) repeating at a given period of time during instruction.

 For example, one DO on the second level of knowledge organisation finds bad plans called "cycles" in
the student's plan. A cycle means that the student has arrived at an integrand of a type, from which he has
started several steps before. There are several exceptions, for example:
 • the type which closes the circle is 2L1 (standard);
 • the student has arrived to the integrand while solving independently integrands in a sum;
 • the integrand is of a type that can be solved by integration by parts, leading to a recurrent or other
formula for solving the integral, i.e. 1/(x2+a2)n and some trigonometric functions.
 The DO for finding cycles in the student's plan has a passing criterion, containing a procedure that
analyses the structure of the student model. Its conditions-part includes the name of the second level dynamic
student model. The effect is adding an element corresponding to "cycle in the student's plan". The action of this
DO is empty. The Pedagogical Component will decide, if a corresponding RO or a re-planning of instruction
will be executed (this will be explained in section 5).
 It is not always possible to decide in advance how to organise diagnosis. Sometimes a diagnosis
conflict situation may occur and the Pedagogical Component will have to make a decision. Two diagnosis-
conflict situations and the possible pedagogical decisions, that can be taken by the system are shown below:
 • What to do when there are differences in the student models at the same level of organisation and for
the same type of problems? Usually such differences appear as a result of learning or forgetting, that has
happened in the meantime. The trend in the sequence of student models can be significant in this case. A
simplified "learning frontier"- interpretation (Goldstein, 1982) is possible via including an appropriate DO on
the given level. For example, on the first level we can have the following DO: The type of problems is
considered as "mastered" and the corresponding element is added to the student model, when either more than
65% from the given problems were solved correctly or more than 90% from the second half of the sequence of
problems (the second level models for these problems show success). It is assumed that learning has occurred
although a lot of problems were not solved correctly.
 • If there are two or more diagnoses that account for the student's behaviour, which one will be chosen?
There are several possibilities:
 A. to choose the first diagnosis, explaining the student's behaviour;
 B. to choose one of the candidates that has already been in the student model (check the
history), because students tend to repeat the same errors;
 C. to call another level of organisation in attempt to find additional evidence for one of the
hypotheses, e.g. "vertical extension" (Self & Dillenbourg, 1990);
 D. to give the student another problem of the same type, e.g. "horizontal extension", (Self &
Dillenbourg, 1990);
 E. to give the student a special problem that will discriminate between the different
hypotheses.
 Every specific conflict situation can be treated in many different ways and the decision which one to
choose relies more on general pedagogical than on domain-dependent considerations. The teacher can decide
which of them will be executed by choosing an appropriate "character" of the Pedagogical Component. This
shall be discussed in more details in section 5.2.

4.2 Modelling the Student's Individual Characteristics

 Wenger (Wenger, 1987) explains the lack of attempts to model the student's individual characteristics
within ITSs with the lack of representational language and diagnostic techniques. The point is to define a set of
parameters (domain-independent) that will allow qualitative evaluation of the student's individual
characteristics, and methods (domain-specific) to update the values of these parameters according to the
student's performance. The only known system, which models the user's individual characteristics is GRUNDY
(Rich, 1983), which uses the method of vocabulary analysis. It is questioned (Carroll & McKendree, 1987)
whether the user's vocabulary can provide adequate information about his individual features, especially in
domains where there is a fixed terminology.
 However, we can view instruction as a field of the student's performance apart from the specific
subject he is been taught. Then we can consider the psycho-pedagogical type (PP-type) of the teaching actions
that are used successfully with the particular student as a "user's vocabulary". If we define the user's vocabulary
in this way, we can use vocabulary analysis. The representation of the model is based on evaluation of
parameters. Diagnosis makes use of statistics of the different types of "words" used by the student.
 How is a "word" defined? Teaching actions can be classified into different clusters with respect to the
individual characteristics the student must have, in order to be able to learn from the teaching action. For

example, self-dependence and confidence, preference of abstract or a presentation style, inductive or deductive
style of thinking etc. Since diagnosis has to differentiate between teaching actions, the PP-type of a teaching
action is indicated in the list of "evaluation criteria" in every TO.
 The evaluation criteria in fact are the domain-independent characteristics of the specific teaching
action. They allow the system to make conclusions about the domain-independent individual characteristics of
the student from his domain-specific actions. Some examples of individual features and the types of actions, by
which they can be inferred are listed below:
 • Inductive type of learning - TOs and ROs whose action shows textual explanations or solved example
problems.
 • Deductive type of learning - the student learns better and recovers from errors easier if he is given
another appropriate problem to solve.
 • Self-confidence - the student prefers to solve problems with a minimum of help or guidance from the
system.
 This "kernel" set of individual characteristics together with standard psychological characteristics like
level of concentration, intelligence, motivation can be used in an arbitrary domain. It could be extended to
include additional characteristics important for any specific domain. The model of the individual student
characteristics is represented by a set of parameters and their values. Two different methods for diagnosis are
used. The method of vocabulary analysis is based on statistics of the values of the evaluation criteria of
successfully used TOs and ROs. A psychological pre-test and methods for quantitative evaluation of certain
personal characteristics (Wittig, 1986) are used for initialising the values. The programs that make the statistics
and analyse the results to update the student model are included in the domain-independent Pedagogical
Component (more specifically, in the Executor program).
 The individual student model in TOBIE is still rudimentary. It contains only five characteristics which
can take discrete values: intelligence, self-confidence, motivation, concentration, preferred type of teaching
actions.

5 Pedagogical Decisions

 The domain-independent Pedagogical Component contains two sub-components, adjustable by the
teacher : a Planner and Executor. Depending on the context of interaction with the student the Pedagogical
Component can take global and local pedagogical decisions.

5.1 Global level

 The global-level pedagogical decisions are connected with instructional planning. The Planner creates
dynamically a plan of instruction for any level of domain-knowledge organisation. It can generate sequences of
knowledge elements that lead from the current state of the dynamic student model to the goal state. During the
teaching session the Planner can be invoked again to modify or exchange the plan according to the changing
situation (goals of instruction, student's knowledge and resources). The planning process is controlled by
parameters, adjustable by the teacher. Through these parameters, for example, the way of instructional planning
can be chosen - automatic (the plan is created by the system) or not automatic (the plan is created by the
teacher). Another parameter allows the teacher to mark certain elements in the knowledge decomposition on the
level of planning, which will be paid more attention during instruction. The teacher can participate in the
planning of the time-schedule by assigning a given value of another parameter.
 After the Planner has found all possible paths to the goal, an Optimizer-program is invoked to choose
one of them as a current plan. An optimum path can be, for example, the shortest path, the path that does not
contain certain knowledge element etc. The Optimizer uses criteria that can be combined. Once chosen, the plan
is followed until an obstacle in the student model or in the environment appears. In this case we say that a local
event occurs and a local-level decision has to be taken.

 5.2 Local level

 The local-level pedagogical decisions are taken during the execution of a plan. The Executor is a
program that chooses TOs that, when applied to the dynamic student model will carry it to the goal-state
according to the plan. If there are several TOs that can do a desired transformation of the student model, the one
whose evaluation criteria match best the individual student model is chosen.
 The Executor has to take decisions in case of unexpected situations that arise during the following of
the plan. Three types of these situations can be defined:
 1) The student:
 a. asks for help, or
 b. an error or is diagnosed by a diagnostic procedure, or
 c. a DO finds a misconception, explaining a sequence of bugs.
 In all these cases the current TO cannot achieve its effects. Therefore, the conditions for some of the
next TOs in the plan will not be present in the student model and at a given stage it will be impossible to
continue following the plan. Since a bug-element enters the student model, conditions for execution of a RO
appear.
 2) The current TO or a DO makes a call of the system on another level of organisation of domain
knowledge which is more appropriate for teaching the student or for diagnosing a specific error.
 3) No applicable TO can be found.

 The decisions that the Executor has to make in situations 1) and 2) can be generalised. We define two
types of reactions: opportunistic and plan-based. Within an opportunistic reaction the system acts so, as to
serve the needs of the moment and within a plan-based reaction the system reconsiders the plan. Whether or not
it is necessary to change the plan depends on the situation; the Planner will be instructed by pointing out which
of the optimising criteria will be given the highest weight. An opportunistic reaction for situations of type 1) is
to execute an appropriate RO for the bug, misconception or call for help immediately. In case of an situation of
type 2) the system executes the TO's call for teaching on another level of domain knowledge organisation. In
case 3) no opportunistic reaction is possible.
 A plan-based reaction will cause invoking the Planner to re-plan instruction with a given optimisation
criterion, specific for the situation and the individual student. Re-planning does not necessarily mean that the
current plan will be abandoned. The resources, goals and the student model will be reconsidered and the optimal
way to continue will be chosen. For example, in case of situation 1)-b, a possible plan-based reaction is to keep
on following the same plan, without letting the student know he has made an error, if only situations of this kind
are occurring. This "keeping silent" will end when either a 1)-c happens (DO finds the misconception
underlying the sequence of bugs, or the time-limit is exhausted) or when the student asks for help (situation 1)-
a) or situations of type 2) or 3) occur.
 The plan-based approach gives rise to situations where a number of alternative Pedagogical decisions
are possible. Consider the following case: The current local situation of type 1) is due to "firing" the last DO on
the given level (see section 4.1.2.). Let us suppose now that the opportunistic-type of reaction is chosen. In this
case the bugs in the student model will be treated independently with ROs. So, there are several errors (bugs,
bad-plans, misconceptions) in the same time in the student model on one level or in models on different levels.
In what order should the ROs be executed? For example, let us suppose that the student has chosen several
times inappropriate transformations during solving an integration problem. Which of them has to be corrected
first?
 If the student is decisive, self- confident, it might be better to start with the one that first entered the
model. If he is indecisive and shy, may be it will be wrong to discourage him by showing that his way was
wrong from the beginning.
 The same question arises when two or more bugs are diagnosed on different levels of organisation
simultaneously. Is it good, for example, to start with executing a RO for a bug on the second level when there
are also "performance-bugs" on the third level? Isn't it better to execute ROs for the performance bugs, to show
the student that even if he had performed correctly the transformations, he wouldn't have obtained the solution?
 To decide in this case, a human-teacher should know more about the student's individual features,
motivation, need for criticism etc. We don't believe that there is a single correct answer to these questions. That
is why we decided to create different "characters" of the Executor and ask the teacher to choose one of them
before the beginning of the teaching session. We define "character" of the Executor as follows: The character is
a set of rules for choosing a type of reaction: opportunistic or plan-based in case of unexpected situation. These
rules operate on information coming from:
 A. the model of the student's domain knowledge (including the record of his bugs and of the ROs
used);

 B. the individual student model;
 C. the type of the situation;
 D. the resources available (time, equipment, memory).
 The rules in case of identical data coming from these sources of information, can be radically different
in the different characters. For example, Character 1 can contain the following rule:
 Rule 1: If the student is concentrated, consistent and self-confident and there is already a bug-element
in the student's model on this level about which the system has chosen not to tell the student and the student is
asking for help now, then choose an opportunistic reaction (a RO for the bug will be executed).

 Since the student is self-confident, concentrated and consistent, the Executor assumes that the reason of
his getting stuck and asking for help is the error he has made before and helps him by pointing it out to the
student.
 The rule for the same situation in Character 2 has a different effect; a plan-based reaction is chosen.
The system will keep quite and discard the student's call for help. The Executor supposes that the student is
following a logical plan of solving the problem and wishes to make the student follow it as long as possible. The
fact that the student is self-confident shows that it will be more useful to criticise the whole plan when it turns
out to be fruitless (when a DO finds a bad plan).
 It is possible to define explicit domain-independent rules that interpret different combinations of these
data-sources into either opportunistic or plan-based reactions. At present, six characters are defined. We intend
to observe the decisions taken by the system with different characters and different individual student models.
We believe this will help to find the significant individual student's features for taking pedagogical decisions.

6 Implementation issues

 The integration tutor was implemented on an IBM PC/AT under the DOS 3.30 operation system. The
languages used were PASCAL and muSIMP. The system is equipped with an authoring component which
allows the teacher to create a problem base and to choose a character of the pedagogical component. The
authoring component invokes the domain expert to analyse every new problem in the problem base and to
create a set of TOs, ROs and DOs for it. The automatic creating of the sets of operators was not our purpose
initially; it can not be done in an arbitrary domain. However, it turned out to be possible for the narrow domain
of integration and for one type of teaching action (problem solving). The response time is satisfactory.
 Implementing the three different levels of organisation of domain knowledge was, in fact, equivalent to
implementing three ITSs in different domains, since the nature of the tasks, the teaching strategies (incl.
managing the initiative in the dialogue) and the criteria for success are fundamentally different. However, the
unified way of knowledge representation, of student modelling and taking pedagogical decisions provided by
the architecture, allows a rapid prototyping. The problem of building a whole system is reduced to the problem
of finding an appropriate way of defining the elements of knowledge organisation for the particular domain and
level. In general, this is a non-trivial problem of knowledge engineering, however, there have been already
methods proposed for knowledge structuring (Grazotto et. al, 1990).

7 Directions of future work

 There are several different directions in which this project may be further developed. Some of them
are:
 1) An object- oriented representation of TOs. This will allow representing explicitly different types of
links between the elements of knowledge organisation, e.g. precedence, analogy, generality. At present a given
set of TOs encodes only one type of link.
 2) Elaborating pedagogical expertise; defining new rules and characters, new situations in which
pedagogical decisions are needed and carrying out experiments with real students;
 3) Applying the existing architecture to different domains, e.g. chemistry, language learning and
development of commercial systems and comparing the results of teaching students with the results obtained by
applying other systems. Evaluating the effectiveness of TOBIE's architecture, i.e. how much human effort is
saved by applying it in comparison with other approaches for building intelligent tutors is needed in order to
justify the label "ITS-shell".

References

Anderson J.R.and Reiser, B.J. (1985) The LISP tutor. Byte. 10(4): 159-175.
Burton R., Brown J.S. (1982) An Investigation of Computer Coaching for Informal Learning Activities, In

Sleeman, D. and Brown, J.S. (Eds.) Intelligent Tutoring Systems, New York: Academic Press: 79-98.
Carroll J.M., McKendree J. (1987) Interface design issues for advice-giving expert systems. Communications of

the ACM. 30 (1).
Garzotto F., Paolini P., Schwabe D. (1990) HDM - A Model-Based Approach to Hypertext Application Design,

Report 90-075, Departimento di Electronica, Politecnico di Milano.
Goldstein I.P. (1982) The Genetic Graph: a Representation for the Evolution of Procedural Knowledge. In

Sleeman, D. and Brown, J.S. (Eds.) Intelligent Tutoring Systems, New York: Academic Press: 51-78.
Kimball R. (1982). A Self-Improving Tutor for Symbolic Integration. In Sleeman, D. and Brown, J.S. (Eds.)

Intelligent Tutoring Systems, New York: Academic Press: 283- 308.
Major N., Reichgelt H. (1992) COCA: A Shell for Intelligent Tutoring Systems. Proceedings ITS'92, LNCS,

Springer: Berlin - Heidelberg: 523 - 506.
Murray T., Woolf B. (1992) Tools for Teacher Participation in ITS Design. Proceedings ITS'92, LNCS,

Springer: Berlin - Heidelberg: 593 - 600.
Nicaud J.-F. (1992) Reference network: A Generic Model for Intelligent Tutoring Systems. Proceedings ITS'92,

LNCS, Springer: Berlin - Heidelberg: 351 - 359.
Peachey D & McCalla G. (1986) Using Planning Techniques in Intelligent Tutoring Systems. Int.J.Man-

Machine Studies. 24: 77-98.
Rich E. (1983). Users are Individuals: Individualizing User Models. Int. J. Man-Machine Studies.18 : 199-214.
Self J.and Dillenbourg P. (1990). A Framework for Student Modelling. Lancaster University AI Group

Technical Report No 48.
Slagle, J.R. (1963). A Heuristic Program That Solves Symbolic Integration Problems in Freshman' Calculus.

Journal of the ACM. 10: 507-520.
Vassileva J. (1990). A Classification and Synthesis of Student Modelling Techniques in Intelligent Computer

Assisted Instruction. Proceedings of the 1990 International Conference on CAL , LNCS No.458. Berlin:
Springer :202-213.

Vassileva J. (1990). An Architecture and Methodology for Creating a Domain-Independent Plan-Based
Intelligent Tutoring System. Educational and TrainingTechnology International. 27 (4): 386-397.

Wenger E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos: Morgan Kaufmann Publishers, Inc.
Wittig A. (1986) Psychology of learning. Shaum's Outline Series. McGraw Hill.

Acknowledgements
I am very grateful to Boiko Dimchev, Dr.Jana Madjarova and Dr.Roumen Radev from the Institute of
Mathematics, Bulgarian Academy of Sciences, who participated in TOBIE's design and implementation. This
work has been supported by Project I-406 with the Bulgarian Ministry of Science and Higher Education.

